jonathanagustin commited on
Commit
402b6c5
1 Parent(s): 4eb9e95

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +190 -0
README.md ADDED
@@ -0,0 +1,190 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ language:
2
+ - en
3
+ license: other
4
+ license_name: Telco Customer Churn License
5
+ license_link: LICENSE
6
+ license_details: This dataset is provided under the Telco Customer Churn License, which allows for free use and distribution for non-commercial purposes. Commercial use requires explicit permission from the creators.
7
+ tags:
8
+ - tabular-classification
9
+ - churn-prediction
10
+ - telecom
11
+ - customer-retention
12
+ - demographics
13
+ - customer-service
14
+ annotations_creators:
15
+ - no-annotation
16
+ language_creators:
17
+ - found
18
+ language_details:
19
+ - en
20
+ pretty_name: Telco Customer Churn
21
+ size_categories:
22
+ - 10K<n<100K
23
+ source_datasets:
24
+ - original
25
+ task_categories:
26
+ - tabular-classification
27
+ task_ids:
28
+ - multi-class-classification
29
+ paperswithcode_id: null
30
+ configs:
31
+ - config_name: default
32
+ data_files:
33
+ - split: train
34
+ path: telco_customer_churn.csv
35
+ dataset_info:
36
+ features:
37
+ - name: Customer ID
38
+ dtype: string
39
+ - name: Gender
40
+ dtype: string
41
+ - name: Age
42
+ dtype: int32
43
+ - name: Under 30
44
+ dtype: bool
45
+ - name: Senior Citizen
46
+ dtype: bool
47
+ - name: Married
48
+ dtype: bool
49
+ - name: Dependents
50
+ dtype: bool
51
+ - name: Number of Dependents
52
+ dtype: int32
53
+ - name: Country
54
+ dtype: string
55
+ - name: State
56
+ dtype: string
57
+ - name: City
58
+ dtype: string
59
+ - name: Zip Code
60
+ dtype: int32
61
+ - name: Lat Long
62
+ dtype: string
63
+ - name: Latitude
64
+ dtype: float32
65
+ - name: Longitude
66
+ dtype: float32
67
+ - name: Population
68
+ dtype: int32
69
+ - name: Quarter
70
+ dtype: string
71
+ - name: Referred a Friend
72
+ dtype: bool
73
+ - name: Number of Referrals
74
+ dtype: int32
75
+ - name: Tenure in Months
76
+ dtype: int32
77
+ - name: Offer
78
+ dtype: string
79
+ - name: Phone Service
80
+ dtype: bool
81
+ - name: Avg Monthly Long Distance Charges
82
+ dtype: float32
83
+ - name: Multiple Lines
84
+ dtype: bool
85
+ - name: Internet Service
86
+ dtype: bool
87
+ - name: Internet Type
88
+ dtype: string
89
+ - name: Avg Monthly GB Download
90
+ dtype: float32
91
+ - name: Online Security
92
+ dtype: bool
93
+ - name: Online Backup
94
+ dtype: bool
95
+ - name: Device Protection Plan
96
+ dtype: bool
97
+ - name: Premium Tech Support
98
+ dtype: bool
99
+ - name: Streaming TV
100
+ dtype: bool
101
+ - name: Streaming Movies
102
+ dtype: bool
103
+ - name: Streaming Music
104
+ dtype: bool
105
+ - name: Unlimited Data
106
+ dtype: bool
107
+ - name: Contract
108
+ dtype: string
109
+ - name: Paperless Billing
110
+ dtype: bool
111
+ - name: Payment Method
112
+ dtype: string
113
+ - name: Monthly Charge
114
+ dtype: float32
115
+ - name: Total Charges
116
+ dtype: float32
117
+ - name: Total Refunds
118
+ dtype: float32
119
+ - name: Total Extra Data Charges
120
+ dtype: float32
121
+ - name: Total Long Distance Charges
122
+ dtype: float32
123
+ - name: Total Revenue
124
+ dtype: float32
125
+ - name: Satisfaction Score
126
+ dtype: int32
127
+ - name: Customer Status
128
+ dtype: string
129
+ - name: Churn Label
130
+ dtype: string
131
+ - name: Churn Value
132
+ dtype: bool
133
+ - name: Churn Score
134
+ dtype: int32
135
+ - name: CLTV
136
+ dtype: float32
137
+ - name: Churn Category
138
+ dtype: string
139
+ - name: Churn Reason
140
+ dtype: string
141
+ - name: Partner
142
+ dtype: bool
143
+ config_name: default
144
+ splits:
145
+ - name: train
146
+ num_bytes: 121430 # Replace with actual value
147
+ num_examples: 7043
148
+ download_size: 121430 # Replace with actual value
149
+ dataset_size: 121430 # Replace with actual value
150
+ train-eval-index:
151
+ - config: default
152
+ task: tabular-classification
153
+ task_id: multi_class_classification
154
+ splits:
155
+ train_split: train
156
+ eval_split: validation # Update if you have a validation split
157
+ col_mapping:
158
+ label: Churn Label
159
+ metrics:
160
+ - type: accuracy
161
+ name: Accuracy
162
+
163
+ ---
164
+ ## Telco Customer Churn
165
+
166
+ **This dataset is a valuable resource for exploring and predicting customer churn in the telecommunications industry. It provides a comprehensive snapshot of customer demographics, service usage patterns, billing information, and churn status, making it ideal for training machine learning models to predict customer churn and develop effective customer retention strategies.**
167
+
168
+ **Content and Structure:**
169
+
170
+ The dataset is structured in a tabular format, with each row representing a unique customer and each column containing attributes about that customer.
171
+
172
+ * **Customer Demographics:** Features like gender, age, marital status, and dependents provide insights into customer profiles.
173
+ * **Service Usage:** Details customer subscriptions to services such as phone, internet, multiple lines, online security, online backup, device protection, tech support, and streaming options.
174
+ * **Billing Information:** Provides data on tenure, contract type, payment method, monthly charges, and total charges.
175
+ * **Churn Information:** Includes labels indicating whether a customer churned, the reason for churn (if applicable), and churn scores for analysis.
176
+
177
+ **Data Collection and Curation:**
178
+
179
+ This dataset is a fictional dataset created by IBM data scientists as a sample dataset for exploring customer churn prediction. It is not based on real-world data and should be treated as a simulation for learning and experimentation.
180
+
181
+ **Usage Examples:**
182
+
183
+ * **Customer Churn Prediction:** Train classification models to predict churn based on customer demographics, service usage, and billing information.
184
+ * **Customer Segmentation:** Analyze the dataset to identify customer segments with different churn probabilities, allowing for targeted retention strategies.
185
+ * **Feature Engineering:** Experiment with feature engineering techniques to improve churn prediction model accuracy.
186
+
187
+ **Additional Information:**
188
+
189
+ * **Industry Relevance:** Relevant for businesses in the telecommunications industry and other sectors that deal with customer churn.
190
+ * **Ethical Considerations:** This is a fictional dataset and does not contain real personal or sensitive information.