Datasets:

Languages:
English
ArXiv:
License:
HI Agent commited on
Commit
a6ad065
1 Parent(s): b367607

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +69 -3
README.md CHANGED
@@ -1,3 +1,69 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ task_categories:
4
+ - question-answering
5
+ language:
6
+ - en
7
+ size_categories:
8
+ - 1K<n<10K
9
+ viewer: false
10
+ ---
11
+
12
+
13
+ ## Dataset Summary
14
+
15
+ **RetrievalQA** is a short-form open-domain question answering (QA) dataset comprising 2,785 questions covering new world and long-tail knowledge. It contains 1,271 questions needing external knowledge retrieval and 1,514 questions that most LLMs can answer with internal parametric knowledge.
16
+
17
+ RetrievalQA enables us to evaluate the effectiveness of **adaptive retrieval-augmented generation (RAG)** approaches, an aspect predominantly overlooked
18
+ in prior studies and recent RAG evaluation systems, which focus only on task performance, the relevance of retrieval context or the faithfulness of answers.
19
+
20
+
21
+ ## Dataset Sources
22
+
23
+
24
+ - **Repository:** https://github.com/hyintell/RetrievalQA
25
+ - **Paper:** https://arxiv.org/abs/2402.16457
26
+
27
+
28
+
29
+ ## Dataset Structure
30
+
31
+
32
+ Here is an example of a data instance:
33
+ ```json
34
+ {
35
+ "data_source": "realtimeqa",
36
+ "question_id": "realtimeqa_20231013_1",
37
+ "question": "What percentage of couples are 'sleep divorced', according to new research?",
38
+ "ground_truth": ["15%"],
39
+ "context": [
40
+ {
41
+ "title": "Do We Sleep Longer When We Share a Bed?",
42
+ "text": "1.4% of respondents have started a sleep divorce, or sleeping separately from their partner, and maintained it in the past year. Adults who have ..."
43
+ }, ...
44
+ ],
45
+ "param_knowledge_answerable": 0
46
+ }
47
+ ```
48
+
49
+ where:
50
+ - `data_source`: the origin dataset of the question comes from
51
+ - `question`: the question
52
+ - `ground_truth`: a list of possible answers
53
+ - `context`: a list of dictionaries of retrieved relevant evidence. Note that the `title` of the document might be empty.
54
+ - `param_knowledge_answerable`: 0 indicates the question needs external retrieval; 1 indicates the question can be answerable using its parametric knowledge
55
+
56
+ ## Citation
57
+
58
+ <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
59
+
60
+ ```bibtex
61
+ @misc{zhang2024retrievalqa,
62
+ title={RetrievalQA: Assessing Adaptive Retrieval-Augmented Generation for Short-form Open-Domain Question Answering},
63
+ author={Zihan Zhang and Meng Fang and Ling Chen},
64
+ year={2024},
65
+ eprint={2402.16457},
66
+ archivePrefix={arXiv},
67
+ primaryClass={cs.CL}
68
+ }
69
+ ```