from datasets import DatasetInfo, Features, Value, ClassLabel, Split, SplitGenerator, GeneratorBasedBuilder, BuilderConfig, Array3D import os from PIL import Image import matplotlib.pyplot as plt import numpy as np _DRIVE_ID = "1fXgVwhdU5YGj0SPIcHxSpxkhvRh54oEH" _URL = f"https://drive.google.com/uc?export=download&id={_DRIVE_ID}" class PlantsDataset(GeneratorBasedBuilder): VERSION = datasets.Version("1.0.0") BUILDER_CONFIGS = [ BuilderConfig(name="default", version=VERSION, description="Default configuration for PlantsDataset"), ] def _info(self): features = Features({ "image": Array3D(dtype="uint8", shape=(None, None, 3)), # Change to Array3D to store image arrays "label": ClassLabel(names=["aleo vera", "calotropis gigantea"]), }) return DatasetInfo( description="Your dataset description", features=features, supervised_keys=("image", "label"), homepage="Your dataset homepage", citation="Citation for your dataset", ) def _split_generators(self, dl_manager): downloaded_file = dl_manager.download_and_extract(_URL) return [ SplitGenerator( name=Split.TRAIN, gen_kwargs={ "data_folder": os.path.join(downloaded_file, "train"), }, ), SplitGenerator( name=Split.TEST, gen_kwargs={ "data_folder": os.path.join(downloaded_file, "test"), }, ), ] def _generate_examples(self, data_folder): label_names = self.info.features['label'].names for label_name in label_names: subfolder_path = os.path.join(data_folder, label_name) label = label_names.index(label_name) for root, _, files in os.walk(subfolder_path): for file_name in files: file_path = os.path.join(root, file_name) if os.path.isfile(file_path) and file_name.lower().endswith(('.png', '.jpg', '.jpeg')): try: with Image.open(file_path) as image: image_array = np.array(image) yield file_path, { "image": image_array, # Keep as numpy array "label": label, } except (IOError, OSError): print(f"Skipped file {file_path}, due to an error opening the image.")