|
import datasets |
|
from datasets import load_dataset, DatasetInfo, Features, Value, ClassLabel, Split, SplitGenerator, GeneratorBasedBuilder, BuilderConfig, Array3D, Version |
|
import os |
|
from PIL import Image |
|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
_DRIVE_ID = "1fXgVwhdU5YGj0SPIcHxSpxkhvRh54oEH" |
|
_URL = f"https://drive.google.com/uc?export=download&id={_DRIVE_ID}" |
|
|
|
class PlantsDataset(GeneratorBasedBuilder): |
|
VERSION = datasets.Version("1.0.0") |
|
BUILDER_CONFIGS = [ |
|
BuilderConfig(name="default", version=VERSION, description="Default configuration for PlantsDataset"), |
|
] |
|
|
|
def _info(self): |
|
features = Features({ |
|
"image": Array3D(dtype="uint8", shape=(None, None, 3)), |
|
"label": ClassLabel(names=["aleo vera", "calotropis gigantea"]), |
|
}) |
|
return DatasetInfo( |
|
description="Your dataset description", |
|
features=features, |
|
supervised_keys=("image", "label"), |
|
homepage="Your dataset homepage", |
|
citation="Citation for your dataset", |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
downloaded_file = dl_manager.download_and_extract(_URL) |
|
|
|
return [ |
|
SplitGenerator( |
|
name=Split.TRAIN, |
|
gen_kwargs={ |
|
"data_folder": os.path.join(downloaded_file, "train"), |
|
}, |
|
), |
|
SplitGenerator( |
|
name=Split.TEST, |
|
gen_kwargs={ |
|
"data_folder": os.path.join(downloaded_file, "test"), |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, data_folder): |
|
label_names = self.info.features['label'].names |
|
for label_name in label_names: |
|
subfolder_path = os.path.join(data_folder, label_name) |
|
label = label_names.index(label_name) |
|
for root, _, files in os.walk(subfolder_path): |
|
for file_name in files: |
|
file_path = os.path.join(root, file_name) |
|
if os.path.isfile(file_path) and file_name.lower().endswith(('.png', '.jpg', '.jpeg')): |
|
try: |
|
with Image.open(file_path) as image: |
|
image_array = np.array(image) |
|
yield file_path, { |
|
"image": image_array, |
|
"label": label, |
|
} |
|
except (IOError, OSError): |
|
print(f"Skipped file {file_path}, due to an error opening the image.") |