# -*- coding: utf-8 -*- """DurhamTrees Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1W5gDhKokcuqoA8AK4a6JR7PIeCUdmrTU """ import datasets import pandas as pd import geopandas as gpd from datasets import DatasetBuilder, DownloadManager, DatasetInfo, SplitGenerator, Split from datasets.features import Features, Value, ClassLabel import matplotlib.pyplot as plt import csv import json import os from typing import List # URL definitions _URLS = { "first_domain1": { "csv_file": "https://drive.google.com/uc?export=download&id=18HmgMbtbntWsvAySoZr4nV1KNu-i7GCy", "geojson_file": "https://drive.google.com/uc?export=download&id=1cbn7EY7RofXN7c6Ph0eIGFIZowPZ5lKE", }, "first_domain2": { "csv_file2": "https://drive.google.com/uc?export=download&id=1RVdaI5dSTPStjhOHO40ypDv2cAQZpi_Y", }, } # Combined Dataset Class class DurhamTrees(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("1.0.0") # Combine BUILDER_CONFIGS from both classes, ensuring they have unique names BUILDER_CONFIGS = [ # Configurations from DatasetClass1 datasets.BuilderConfig(name="class1_domain1", description="this is combined of csv and geojson"), # Configurations from DatasetClass2 datasets.BuilderConfig(name="class2_domain1", description="this is csv file"), # Add other configurations as necessary ] def _info(self): # Combine the features from both classes into one Features dictionary return datasets.DatasetInfo( description="This dataset combines information from both classes.", features=datasets.Features({ # Features from DatasetClass1 "feature1_from_class1": Value("string"), "geometry": Value("string"), "OBJECTID": Value("int64"), "X": Value("float64"), "Y": Value("float64"), # Features from DatasetClass2 "feature1_from_class2": Value("string"), "geometry": Value("string"), "OBJECTID": Value("int64"), "streetaddress": Value("string"), "city": Value("string"), "facilityid": Value("int64"), "present": Value("string"), "genus": Value("string"), "species": Value("string"), "commonname": Value("string"), "diameterin": Value("float64"), "condition": Value("string"), "contractwork": Value("string"), "neighborhood": Value("string"), "program": Value("string"), "plantingw": Value("string"), "plantingcond": Value("string"), "underpwerlins": Value("string"), "GlobalID": Value("string"), "created_user": Value("string"), "last_edited_user": Value("string"), "isoprene": Value("float64"), "monoterpene": Value("float64"), # ... add other features as needed }), supervised_keys=None, homepage="https://github.com/AuraMa111?tab=repositories", citation="Citation for the combined dataset", ) def _split_generators(self, dl_manager): downloaded_files = dl_manager.download_and_extract(_URLS) # Combine the split generators from both classes return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ # Arguments for DatasetClass1 "class1_data_file": downloaded_files["first_domain1"]["csv_file"], "class1_geojson_file": downloaded_files["first_domain1"]["geojson_file"], # Arguments for DatasetClass2 "class2_data_file": downloaded_files["first_domain2"]["csv_file2"], # Additional arguments if needed "split": "train", }, ), # Add other splits as necessary, each with its own generator ] def _generate_examples(self, class1_data_file, class1_geojson_file, class2_data_file, split): # Generate examples from the first dataset class for example in self._generate_examples_from_class1(class1_data_file, class1_geojson_file): yield example # Generate examples from the second dataset class for example in self._generate_examples_from_class2(class2_data_file): yield example def _generate_examples_from_class1(self, csv_filepath, geojson_filepath): columns_to_extract = ["geometry", "OBJECTID", "X", "Y"] csv_data = pd.read_csv(csv_filepath) with open(geojson_filepath, 'r') as file: geojson_dict = json.load(file) gdf = gpd.GeoDataFrame.from_features(geojson_dict['features']) merged_data = gdf.merge(csv_data, on='OBJECTID') final_data = merged_data[columns_to_extract] for id_, row in final_data.iterrows(): example = row.to_dict() yield id_, example def _generate_examples_from_class2(self, csv_filepath2): columns_to_extract = ["geometry", "OBJECTID", "streetaddress", "city", "facilityid", "present", "genus", "species", "commonname", "diameterin", "condition", "contractwork", "neighborhood", "program", "plantingw", "plantingcond", "underpwerlins", "GlobalID", "created_user", "last_edited_user", "isoprene", "monoterpene", "coremoved_ozperyr", "coremoved_dolperyr", "o3removed_ozperyr", "o3removed_dolperyr", "no2removed_ozperyr", "no2removed_dolperyr", "so2removed_ozperyr", "so2removed_dolperyr", "pm10removed_ozperyr", "pm10removed_dolperyr", "pm25removed_ozperyr", "o2production_lbperyr", "replacevalue_dol", "carbonstorage_lb", "carbonstorage_dol", "grosscarseq_lbperyr", "X", "Y"] # Load the CSV data into a pandas DataFrame csv_data2 = pd.read_csv(csv_filepath2) # Filter the DataFrame to only include the specified columns final_data = csv_data2[columns_to_extract] # Iterate over the rows of the final DataFrame for id_, row in final_data.iterrows(): # Convert the row to a dictionary example = row.to_dict() # Yield the example with its index as the identifier yield id_, example