Datasets:
Delete durham_trees_analysis.py
Browse files- durham_trees_analysis.py +0 -72
durham_trees_analysis.py
DELETED
@@ -1,72 +0,0 @@
|
|
1 |
-
# -*- coding: utf-8 -*-
|
2 |
-
"""durham_trees_analysis
|
3 |
-
|
4 |
-
Automatically generated by Colaboratory.
|
5 |
-
|
6 |
-
Original file is located at
|
7 |
-
https://colab.research.google.com/drive/1OjlRC7F_UICGJM59jzSoy1o2crZxqXCl
|
8 |
-
"""
|
9 |
-
|
10 |
-
# Save this code as a file named 'durham_trees_analysis.py'
|
11 |
-
|
12 |
-
# Install required packages
|
13 |
-
import subprocess
|
14 |
-
|
15 |
-
# Install datasets package
|
16 |
-
subprocess.run(["pip", "install", "datasets", "geopandas", "seaborn", "matplotlib", "mplcursors", "pandas"])
|
17 |
-
|
18 |
-
# Import libraries
|
19 |
-
from datasets import load_dataset
|
20 |
-
import seaborn as sns
|
21 |
-
import matplotlib.pyplot as plt
|
22 |
-
import mplcursors
|
23 |
-
import pandas as pd
|
24 |
-
import geopandas as gpd
|
25 |
-
|
26 |
-
# Load dataset
|
27 |
-
dataset = load_dataset("Ziyuan111/DurhamTrees")
|
28 |
-
|
29 |
-
# Convert dataset to pandas DataFrame
|
30 |
-
df = pd.DataFrame(dataset['train'])
|
31 |
-
|
32 |
-
# Interactive scatter plot with seaborn and mplcursors
|
33 |
-
def plot_interactive_scatter():
|
34 |
-
scatter = sns.scatterplot(data=df, x='X', y='Y', hue='species')
|
35 |
-
plt.xlabel('X')
|
36 |
-
plt.ylabel('Y')
|
37 |
-
plt.legend([],[], frameon=False)
|
38 |
-
cursor = mplcursors.cursor(hover=True)
|
39 |
-
|
40 |
-
@cursor.connect("add")
|
41 |
-
def on_add(sel):
|
42 |
-
sel.annotation.set_text(df.iloc[sel.target.index]['species'])
|
43 |
-
plt.show()
|
44 |
-
plt.savefig('interactive_scatter.png')
|
45 |
-
display(Image('interactive_scatter.png'))
|
46 |
-
|
47 |
-
# Plot tree planting sites with geopandas
|
48 |
-
def plot_tree_sites():
|
49 |
-
gdf = gpd.GeoDataFrame(df, geometry=gpd.points_from_xy(df.X, df.Y))
|
50 |
-
durham_center = {'x': -78.898619, 'y': 35.994033} # Durham, NC coordinates
|
51 |
-
fig, ax = plt.subplots(figsize=(10, 10))
|
52 |
-
gdf.plot(ax=ax, color='green')
|
53 |
-
buffer = 0.05
|
54 |
-
ax.set_xlim([durham_center['x'] - buffer, durham_center['x'] + buffer])
|
55 |
-
ax.set_ylim([durham_center['y'] - buffer, durham_center['y'] + buffer])
|
56 |
-
ax.set_title('Tree Planting Sites in Durham')
|
57 |
-
ax.set_xlabel('Longitude')
|
58 |
-
ax.set_ylabel('Latitude')
|
59 |
-
ax.set_axis_off()
|
60 |
-
plt.show()
|
61 |
-
plt.savefig('tree_sites.png')
|
62 |
-
display(Image('tree_sites.png'))
|
63 |
-
|
64 |
-
# Print correlation matrix
|
65 |
-
def print_correlation_matrix():
|
66 |
-
correlation_matrix = df[['diameterin', 'carbonstorage_lb']].corr()
|
67 |
-
print(correlation_matrix)
|
68 |
-
|
69 |
-
# Call the functions
|
70 |
-
plot_interactive_scatter()
|
71 |
-
plot_tree_sites()
|
72 |
-
print_correlation_matrix()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|