Ziyuan111 commited on
Commit
c9b831e
·
verified ·
1 Parent(s): 568e822

Delete durhamtrees.py

Browse files
Files changed (1) hide show
  1. durhamtrees.py +0 -256
durhamtrees.py DELETED
@@ -1,256 +0,0 @@
1
- # -*- coding: utf-8 -*-
2
- """DurhamTrees
3
-
4
- Automatically generated by Colaboratory.
5
-
6
- Original file is located at
7
- https://colab.research.google.com/drive/1czig7JIbqTKp9wNUIRcdMEDF3pFgtxKv
8
- """
9
-
10
- # -*- coding: utf-8 -*-
11
- """DurhamTrees
12
- Automatically generated by Colaboratory.
13
- Original file is located at
14
- https://colab.research.google.com/drive/1czig7JIbqTKp9wNUIRcdMEDF3pFgtxKv
15
- """
16
- import pyarrow.parquet as pq
17
- import pandas as pd
18
- import geopandas as gpd
19
- from datasets import (
20
- GeneratorBasedBuilder, Version, DownloadManager, SplitGenerator, Split,
21
- Features, Value, BuilderConfig, DatasetInfo
22
- )
23
- import matplotlib.pyplot as plt
24
- import seaborn as sns
25
- import csv
26
- import json
27
- from shapely.geometry import Point
28
- import base64
29
-
30
- # URL definitions
31
- _URLS = {
32
- "first_domain1": {
33
- "csv_file": "https://drive.google.com/uc?export=download&id=18HmgMbtbntWsvAySoZr4nV1KNu-i7GCy",
34
- "geojson_file": "https://drive.google.com/uc?export=download&id=1cbn7EY7RofXN7c6Ph0eIGFIZowPZ5lKE",
35
- "parquet_file": "https://drive.google.com/uc?export=download&id=1RNDLJLoSSV9RJptVyfWFhPra0nh-i_CN",
36
- },
37
- "first_domain2": {
38
- "csv_file2": "https://drive.google.com/uc?export=download&id=1RVdaI5dSTPStjhOHO40ypDv2cAQZpi_Y",
39
- },
40
- }
41
-
42
- # Combined Dataset Class
43
- class DurhamTrees(GeneratorBasedBuilder):
44
- VERSION = Version("1.0.0")
45
-
46
- class MyConfig(BuilderConfig):
47
- def __init__(self, **kwargs):
48
- super().__init__(**kwargs)
49
-
50
- BUILDER_CONFIGS = [
51
- MyConfig(name="class1_domain1", description="this is combined of csv and geojson"),
52
- MyConfig(name="class2_domain1", description="this is csv file"),
53
- ]
54
-
55
- def _info(self):
56
- return DatasetInfo(
57
- description="This dataset combines information from both classes, with additional processing for csv_file2.",
58
- features=Features({
59
- "feature1_from_class1": Value("string"),
60
- "geometry":Value("string"),
61
- "OBJECTID": Value("int64"),
62
- "X": Value("float64"),
63
- "Y": Value("float64"),
64
- "image": Value("binary"),
65
- "label": Value("int64"),
66
- "feature1_from_class2": Value("string"),
67
- "streetaddress": Value("string"),
68
- "city": Value("string"),
69
- "facilityid": Value("int64"),
70
- "present": Value("string"),
71
- "genus": Value("string"),
72
- "species": Value("string"),
73
- "commonname": Value("string"),
74
- "diameterin": Value("float64"),
75
- "condition": Value("string"),
76
- "neighborhood": Value("string"),
77
- "program": Value("string"),
78
- "plantingw": Value("string"),
79
- "plantingcond": Value("string"),
80
- "underpwerlins": Value("string"),
81
- "GlobalID": Value("string"),
82
- "created_user": Value("string"),
83
- "last_edited_user": Value("string"),
84
- "isoprene": Value("float64"),
85
- "monoterpene": Value("float64"),
86
- "monoterpene_class2": Value("float64"),
87
- "vocs": Value("float64"),
88
- "coremoved_ozperyr": Value("float64"),
89
- "coremoved_dolperyr": Value("float64"),
90
- "o3removed_ozperyr": Value("float64"),
91
- "o3removed_dolperyr": Value("float64"),
92
- "no2removed_ozperyr": Value("float64"),
93
- "no2removed_dolperyr": Value("float64"),
94
- "so2removed_ozperyr": Value("float64"),
95
- "so2removed_dolperyr": Value("float64"),
96
- "pm10removed_ozperyr": Value("float64"),
97
- "pm10removed_dolperyr": Value("float64"),
98
- "pm25removed_ozperyr": Value("float64"),
99
- "o2production_lbperyr": Value("float64"),
100
- "replacevalue_dol": Value("float64"),
101
- "carbonstorage_lb": Value("float64"),
102
- "carbonstorage_dol": Value("float64"),
103
- "grosscarseq_lbperyr": Value("float64"),
104
- "grosscarseq_dolperyr": Value("float64"),
105
- "avoidrunoff_ft2peryr": Value("float64"),
106
- "avoidrunoff_dol2peryr": Value("float64"),
107
- "polremoved_ozperyr": Value("float64"),
108
- "polremoved_dolperyr": Value("float64"),
109
- "totannbenefits_dolperyr": Value("float64"),
110
- "leafarea_sqft": Value("float64"),
111
- "potevapotran_cuftperyr": Value("float64"),
112
- "evaporation_cuftperyr": Value("float64"),
113
- "transpiration_cuftperyr": Value("float64"),
114
- "h2ointercept_cuftperyr": Value("float64"),
115
- "carbonavoid_lbperyr": Value("float64"),
116
- "carbonavoid_dolperyr": Value("float64"),
117
- "heating_mbtuperyr": Value("float64"),
118
- "heating_dolperyrmbtu": Value("float64"),
119
- "heating_kwhperyr": Value("float64"),
120
- "heating_dolperyrmwh": Value("float64"),
121
- "cooling_kwhperyr": Value("float64"),
122
- "cooling_dolperyr": Value("float64"),
123
- "totalenerg_dolperyr": Value("float64"),
124
- }),
125
- supervised_keys=("image", "label"),
126
- homepage="https://github.com/AuraMa111?tab=repositories",
127
- citation="Citation for the combined dataset",
128
- )
129
-
130
- def _split_generators(self, dl_manager):
131
- downloaded_files = dl_manager.download_and_extract(_URLS)
132
-
133
- return [
134
- SplitGenerator(
135
- name=Split.TRAIN,
136
- gen_kwargs={
137
- "class1_data_file": downloaded_files["first_domain1"]["csv_file"],
138
- "class1_geojson_file": downloaded_files["first_domain1"]["geojson_file"],
139
- "class2_data_file": downloaded_files["first_domain2"]["csv_file2"],
140
- "parquet_file": downloaded_files["first_domain1"]["parquet_file"],
141
- "split": Split.TRAIN,
142
- },
143
- ),
144
- ]
145
-
146
-
147
-
148
-
149
- def _generate_examples(self, class1_data_file, class1_geojson_file, class2_data_file, parquet_file, split):
150
- class1_examples = list(self._generate_examples_from_class1(class1_data_file, class1_geojson_file))
151
- class2_examples = list(self._generate_examples_from_class2(class2_data_file))
152
-
153
- # Load Parquet file
154
- parquet_data = pq.read_table(parquet_file).to_pandas()
155
- class1_examples += list(self._generate_examples_from_parquet(parquet_data))
156
-
157
- examples = class1_examples + class2_examples
158
- df = pd.DataFrame(examples)
159
-
160
- for id_, example in enumerate(examples):
161
- if not isinstance(example, dict):
162
- # Convert the example to a dictionary if it's not
163
- example = {"example": example}
164
- yield id_, example
165
-
166
- def _generate_examples_from_class1(self, csv_filepath, geojson_filepath):
167
- columns_to_extract = ["OBJECTID", "X", "Y"] # Remove "geometry" from columns_to_extract
168
- csv_data = pd.read_csv(csv_filepath)
169
-
170
- with open(geojson_filepath, 'r') as file:
171
- geojson_dict = json.load(file)
172
- gdf = gpd.GeoDataFrame.from_features(geojson_dict['features'], crs="EPSG:4326") # Specify the CRS if known
173
- merged_data = gdf.merge(csv_data, on='OBJECTID')
174
- final_data = merged_data[columns_to_extract + ['geometry']] # Include 'geometry' in the final_data
175
- for id_, row in final_data.iterrows():
176
- example = row.to_dict()
177
- yield id_, example
178
-
179
-
180
-
181
-
182
-
183
- def _generate_examples_from_class2(self, csv_filepath2):
184
- csv_data2 = pd.read_csv(csv_filepath2)
185
-
186
-
187
- columns_to_extract = [
188
- "streetaddress", "city", "facilityid", "present", "genus", "species",
189
- "commonname", "diameterin", "condition", "neighborhood", "program", "plantingw",
190
- "plantingcond", "underpwerlins", "GlobalID", "created_user", "last_edited_user", "isoprene", "monoterpene",
191
- "monoterpene", "vocs", "coremoved_ozperyr", "coremoved_dolperyr",
192
- "o3removed_ozperyr", "o3removed_dolperyr", "no2removed_ozperyr", "no2removed_dolperyr",
193
- "so2removed_ozperyr", "so2removed_dolperyr", "pm10removed_ozperyr", "pm10removed_dolperyr",
194
- "pm25removed_ozperyr", "o2production_lbperyr", "replacevalue_dol", "carbonstorage_lb",
195
- "carbonstorage_dol", "grosscarseq_lbperyr", "grosscarseq_dolperyr", "polremoved_ozperyr", "polremoved_dolperyr",
196
- "totannbenefits_dolperyr", "leafarea_sqft", "potevapotran_cuftperyr", "evaporation_cuftperyr",
197
- "transpiration_cuftperyr", "h2ointercept_cuftperyr",
198
- "carbonavoid_lbperyr", "carbonavoid_dolperyr", "heating_mbtuperyr",
199
- "heating_dolperyrmbtu", "heating_kwhperyr", "heating_dolperyrmwh", "cooling_kwhperyr",
200
- "cooling_dolperyr", "totalenerg_dolperyr",
201
- ]
202
-
203
- final_data = csv_data2[columns_to_extract]
204
- for id_, row in final_data.iterrows():
205
- example = row.to_dict()
206
- non_empty_example = {key: value for key, value in example.items() if pd.notna(value)}
207
- yield id_, example
208
-
209
-
210
- def _generate_examples_from_parquet(self, parquet_data):
211
- for id_, row in parquet_data.iterrows():
212
- # Check if the "image" column is present and not empty
213
- if "image" in row and "bytes" in row["image"]:
214
- # Decode the base64-encoded image bytes
215
- image_data = base64.b64decode(row["image"]["bytes"])
216
- example = {"image": image_data, "label": row["label"]}
217
-
218
- # Display the image
219
- image_bytes = example.get('image', None)
220
- if image_bytes:
221
- img = mpimg.imread(io.BytesIO(image_bytes), format='JPG')
222
- plt.imshow(img)
223
- plt.show()
224
-
225
- yield id_, example
226
- else:
227
- print(f"Skipping example {id_} as it has missing or invalid image data")
228
-
229
-
230
-
231
- def _correlation_analysis(self, df):
232
- correlation_matrix = df.corr()
233
- sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', linewidths=.5)
234
- plt.title("Correlation Analysis")
235
- plt.show()
236
-
237
-
238
-
239
-
240
- # Create an instance of the DurhamTrees class
241
- durham_trees_dataset = DurhamTrees(name='class1_domain1')
242
-
243
- # Build the dataset
244
- durham_trees_dataset.download_and_prepare()
245
-
246
- # Access the dataset
247
- dataset = durham_trees_dataset.as_dataset()
248
-
249
- # Create an instance of the DurhamTrees class for another configuration
250
- durham_trees_dataset_another = DurhamTrees(name='class2_domain1')
251
-
252
- # Build the dataset for the new instance
253
- durham_trees_dataset_another.download_and_prepare()
254
-
255
- # Access the dataset for the new instance
256
- dataset_another = durham_trees_dataset_another.as_dataset()