Datasets:
Upload durhamtrees.py
Browse files- durhamtrees.py +146 -0
durhamtrees.py
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""DurhamTrees
|
3 |
+
|
4 |
+
Automatically generated by Colaboratory.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1W5gDhKokcuqoA8AK4a6JR7PIeCUdmrTU
|
8 |
+
"""
|
9 |
+
|
10 |
+
import datasets
|
11 |
+
import pandas as pd
|
12 |
+
import geopandas as gpd
|
13 |
+
from datasets import DatasetBuilder, DownloadManager, DatasetInfo, SplitGenerator, Split
|
14 |
+
from datasets.features import Features, Value, ClassLabel
|
15 |
+
import matplotlib.pyplot as plt
|
16 |
+
import csv
|
17 |
+
import json
|
18 |
+
import os
|
19 |
+
from typing import List
|
20 |
+
# URL definitions
|
21 |
+
_URLS = {
|
22 |
+
"first_domain1": {
|
23 |
+
"csv_file": "https://drive.google.com/uc?export=download&id=18HmgMbtbntWsvAySoZr4nV1KNu-i7GCy",
|
24 |
+
"geojson_file": "https://drive.google.com/uc?export=download&id=1cbn7EY7RofXN7c6Ph0eIGFIZowPZ5lKE",
|
25 |
+
},
|
26 |
+
"first_domain2": {
|
27 |
+
"csv_file2": "https://drive.google.com/uc?export=download&id=1RVdaI5dSTPStjhOHO40ypDv2cAQZpi_Y",
|
28 |
+
},
|
29 |
+
}
|
30 |
+
|
31 |
+
# Combined Dataset Class
|
32 |
+
class DurhamTrees(datasets.GeneratorBasedBuilder):
|
33 |
+
VERSION = datasets.Version("1.0.0")
|
34 |
+
|
35 |
+
# Combine BUILDER_CONFIGS from both classes, ensuring they have unique names
|
36 |
+
BUILDER_CONFIGS = [
|
37 |
+
# Configurations from DatasetClass1
|
38 |
+
datasets.BuilderConfig(name="class1_domain1", description="this is combined of csv and geojson"),
|
39 |
+
# Configurations from DatasetClass2
|
40 |
+
datasets.BuilderConfig(name="class2_domain1", description="this is csv file"),
|
41 |
+
# Add other configurations as necessary
|
42 |
+
]
|
43 |
+
|
44 |
+
def _info(self):
|
45 |
+
# Combine the features from both classes into one Features dictionary
|
46 |
+
return datasets.DatasetInfo(
|
47 |
+
description="This dataset combines information from both classes.",
|
48 |
+
features=datasets.Features({
|
49 |
+
# Features from DatasetClass1
|
50 |
+
"feature1_from_class1": Value("string"),
|
51 |
+
"geometry": Value("string"),
|
52 |
+
"OBJECTID": Value("int64"),
|
53 |
+
"X": Value("float64"),
|
54 |
+
"Y": Value("float64"),
|
55 |
+
|
56 |
+
# Features from DatasetClass2
|
57 |
+
"feature1_from_class2": Value("string"),
|
58 |
+
"geometry": Value("string"),
|
59 |
+
"OBJECTID": Value("int64"),
|
60 |
+
"streetaddress": Value("string"),
|
61 |
+
"city": Value("string"),
|
62 |
+
"facilityid": Value("int64"),
|
63 |
+
"present": Value("string"),
|
64 |
+
"genus": Value("string"),
|
65 |
+
"species": Value("string"),
|
66 |
+
"commonname": Value("string"),
|
67 |
+
"diameterin": Value("float64"),
|
68 |
+
"condition": Value("string"),
|
69 |
+
"contractwork": Value("string"),
|
70 |
+
"neighborhood": Value("string"),
|
71 |
+
"program": Value("string"),
|
72 |
+
"plantingw": Value("string"),
|
73 |
+
"plantingcond": Value("string"),
|
74 |
+
"underpwerlins": Value("string"),
|
75 |
+
"GlobalID": Value("string"),
|
76 |
+
"created_user": Value("string"),
|
77 |
+
"last_edited_user": Value("string"),
|
78 |
+
"isoprene": Value("float64"),
|
79 |
+
"monoterpene": Value("float64"),
|
80 |
+
# ... add other features as needed
|
81 |
+
}),
|
82 |
+
supervised_keys=None,
|
83 |
+
homepage="https://github.com/AuraMa111?tab=repositories",
|
84 |
+
citation="Citation for the combined dataset",
|
85 |
+
)
|
86 |
+
|
87 |
+
def _split_generators(self, dl_manager):
|
88 |
+
downloaded_files = dl_manager.download_and_extract(_URLS)
|
89 |
+
|
90 |
+
# Combine the split generators from both classes
|
91 |
+
return [
|
92 |
+
datasets.SplitGenerator(
|
93 |
+
name=datasets.Split.TRAIN,
|
94 |
+
gen_kwargs={
|
95 |
+
# Arguments for DatasetClass1
|
96 |
+
"class1_data_file": downloaded_files["first_domain1"]["csv_file"],
|
97 |
+
"class1_geojson_file": downloaded_files["first_domain1"]["geojson_file"],
|
98 |
+
|
99 |
+
# Arguments for DatasetClass2
|
100 |
+
"class2_data_file": downloaded_files["first_domain2"]["csv_file2"],
|
101 |
+
|
102 |
+
# Additional arguments if needed
|
103 |
+
"split": "train",
|
104 |
+
},
|
105 |
+
),
|
106 |
+
# Add other splits as necessary, each with its own generator
|
107 |
+
]
|
108 |
+
|
109 |
+
def _generate_examples(self, class1_data_file, class1_geojson_file, class2_data_file, split):
|
110 |
+
# Generate examples from the first dataset class
|
111 |
+
for example in self._generate_examples_from_class1(class1_data_file, class1_geojson_file):
|
112 |
+
yield example
|
113 |
+
|
114 |
+
# Generate examples from the second dataset class
|
115 |
+
for example in self._generate_examples_from_class2(class2_data_file):
|
116 |
+
yield example
|
117 |
+
|
118 |
+
def _generate_examples_from_class1(self, csv_filepath, geojson_filepath):
|
119 |
+
columns_to_extract = ["geometry", "OBJECTID", "X", "Y"]
|
120 |
+
csv_data = pd.read_csv(csv_filepath)
|
121 |
+
|
122 |
+
with open(geojson_filepath, 'r') as file:
|
123 |
+
geojson_dict = json.load(file)
|
124 |
+
gdf = gpd.GeoDataFrame.from_features(geojson_dict['features'])
|
125 |
+
merged_data = gdf.merge(csv_data, on='OBJECTID')
|
126 |
+
final_data = merged_data[columns_to_extract]
|
127 |
+
for id_, row in final_data.iterrows():
|
128 |
+
example = row.to_dict()
|
129 |
+
yield id_, example
|
130 |
+
|
131 |
+
def _generate_examples_from_class2(self, csv_filepath2):
|
132 |
+
columns_to_extract = ["geometry", "OBJECTID", "streetaddress", "city", "facilityid", "present", "genus", "species", "commonname", "diameterin", "condition", "contractwork", "neighborhood", "program", "plantingw", "plantingcond", "underpwerlins", "GlobalID", "created_user", "last_edited_user", "isoprene", "monoterpene", "coremoved_ozperyr", "coremoved_dolperyr", "o3removed_ozperyr", "o3removed_dolperyr", "no2removed_ozperyr", "no2removed_dolperyr", "so2removed_ozperyr", "so2removed_dolperyr", "pm10removed_ozperyr", "pm10removed_dolperyr", "pm25removed_ozperyr", "o2production_lbperyr", "replacevalue_dol", "carbonstorage_lb", "carbonstorage_dol", "grosscarseq_lbperyr", "X", "Y"]
|
133 |
+
|
134 |
+
# Load the CSV data into a pandas DataFrame
|
135 |
+
csv_data2 = pd.read_csv(csv_filepath2)
|
136 |
+
|
137 |
+
# Filter the DataFrame to only include the specified columns
|
138 |
+
final_data = csv_data2[columns_to_extract]
|
139 |
+
|
140 |
+
# Iterate over the rows of the final DataFrame
|
141 |
+
for id_, row in final_data.iterrows():
|
142 |
+
# Convert the row to a dictionary
|
143 |
+
example = row.to_dict()
|
144 |
+
|
145 |
+
# Yield the example with its index as the identifier
|
146 |
+
yield id_, example
|