File size: 11,853 Bytes
4e819e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
# -*- coding: utf-8 -*-
"""DurhamTrees

Automatically generated by Colaboratory.

Original file is located at
    https://colab.research.google.com/drive/1czig7JIbqTKp9wNUIRcdMEDF3pFgtxKv
"""

# -*- coding: utf-8 -*-
"""DurhamTrees
Automatically generated by Colaboratory.
Original file is located at
    https://colab.research.google.com/drive/1czig7JIbqTKp9wNUIRcdMEDF3pFgtxKv
"""
import pyarrow.parquet as pq
import pandas as pd
import geopandas as gpd
from datasets import (
    GeneratorBasedBuilder, Version, DownloadManager, SplitGenerator, Split,
    Features, Value, BuilderConfig, DatasetInfo
)
import matplotlib.pyplot as plt
import seaborn as sns
import csv
import json
from shapely.geometry import Point
import base64
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import io
# URL definitions
_URLS = {
    "first_domain1": {
        "csv_file": "https://drive.google.com/uc?export=download&id=18HmgMbtbntWsvAySoZr4nV1KNu-i7GCy",
        "geojson_file": "https://drive.google.com/uc?export=download&id=1cbn7EY7RofXN7c6Ph0eIGFIZowPZ5lKE",
        "parquet_file": "https://drive.google.com/uc?export=download&id=1RNDLJLoSSV9RJptVyfWFhPra0nh-i_CN",
    },
    "first_domain2": {
        "csv_file2": "https://drive.google.com/uc?export=download&id=1RVdaI5dSTPStjhOHO40ypDv2cAQZpi_Y",
    },
}

# Combined Dataset Class
class DurhamTrees(GeneratorBasedBuilder):
    VERSION = Version("1.0.0")

    class MyConfig(BuilderConfig):
        def __init__(self, **kwargs):
            super().__init__(**kwargs)

    BUILDER_CONFIGS = [
        MyConfig(name="class1_domain1", description="this is combined of csv and geojson"),
        MyConfig(name="class2_domain1", description="this is csv file"),
    ]

    def _info(self):
        return DatasetInfo(
            description="This dataset combines information from both classes, with additional processing for csv_file2.",
            features=Features({
                "feature1_from_class1": Value("string"),
                "geometry":Value("string"),
                "OBJECTID": Value("int64"),
                "X": Value("float64"),
                "Y": Value("float64"),
                "image": Value("binary"),
                "label": Value("int64"),
                "feature1_from_class2": Value("string"),
                "streetaddress": Value("string"),
                "city": Value("string"),
                "facilityid": Value("int64"),
                "present": Value("string"),
                "genus": Value("string"),
                "species": Value("string"),
                "commonname": Value("string"),
                "diameterin": Value("float64"),
                "condition": Value("string"),
                "neighborhood": Value("string"),
                "program": Value("string"),
                "plantingw": Value("string"),
                "plantingcond": Value("string"),
                "underpwerlins": Value("string"),
                "GlobalID": Value("string"),
                "created_user": Value("string"),
                "last_edited_user": Value("string"),
                "isoprene": Value("float64"),
                "monoterpene": Value("float64"),
                "monoterpene_class2": Value("float64"),
                "vocs": Value("float64"),
                "coremoved_ozperyr": Value("float64"),
                "coremoved_dolperyr": Value("float64"),
                "o3removed_ozperyr": Value("float64"),
                "o3removed_dolperyr": Value("float64"),
                "no2removed_ozperyr": Value("float64"),
                "no2removed_dolperyr": Value("float64"),
                "so2removed_ozperyr": Value("float64"),
                "so2removed_dolperyr": Value("float64"),
                "pm10removed_ozperyr": Value("float64"),
                "pm10removed_dolperyr": Value("float64"),
                "pm25removed_ozperyr": Value("float64"),
                "o2production_lbperyr": Value("float64"),
                "replacevalue_dol": Value("float64"),
                "carbonstorage_lb": Value("float64"),
                "carbonstorage_dol": Value("float64"),
                "grosscarseq_lbperyr": Value("float64"),
                "grosscarseq_dolperyr": Value("float64"),
                "avoidrunoff_ft2peryr": Value("float64"),
                "avoidrunoff_dol2peryr": Value("float64"),
                "polremoved_ozperyr": Value("float64"),
                "polremoved_dolperyr": Value("float64"),
                "totannbenefits_dolperyr": Value("float64"),
                "leafarea_sqft": Value("float64"),
                "potevapotran_cuftperyr": Value("float64"),
                "evaporation_cuftperyr": Value("float64"),
                "transpiration_cuftperyr": Value("float64"),
                "h2ointercept_cuftperyr": Value("float64"),
                "carbonavoid_lbperyr": Value("float64"),
                "carbonavoid_dolperyr": Value("float64"),
                "heating_mbtuperyr": Value("float64"),
                "heating_dolperyrmbtu": Value("float64"),
                "heating_kwhperyr": Value("float64"),
                "heating_dolperyrmwh": Value("float64"),
                "cooling_kwhperyr": Value("float64"),
                "cooling_dolperyr": Value("float64"),
                "totalenerg_dolperyr": Value("float64"),
            }),
            supervised_keys=("image", "label"),
            homepage="https://github.com/AuraMa111?tab=repositories",
            citation="Citation for the combined dataset",
        )

    def _split_generators(self, dl_manager):
          downloaded_files = dl_manager.download_and_extract(_URLS)

          return [
              SplitGenerator(
                  name=Split.TRAIN,
                  gen_kwargs={
                      "class1_data_file": downloaded_files["first_domain1"]["csv_file"],
                      "class1_geojson_file": downloaded_files["first_domain1"]["geojson_file"],
                      "class2_data_file": downloaded_files["first_domain2"]["csv_file2"],
                      "parquet_file": downloaded_files["first_domain1"]["parquet_file"],
                      "split": Split.TRAIN,
                  },
              ),
          ]




    def _generate_examples(self, class1_data_file, class1_geojson_file, class2_data_file, parquet_file, split):
        class1_examples = list(self._generate_examples_from_class1(class1_data_file, class1_geojson_file))
        class2_examples = list(self._generate_examples_from_class2(class2_data_file))

        # Load Parquet file
        parquet_data = pq.read_table(parquet_file).to_pandas()
        class1_examples += list(self._generate_examples_from_parquet(parquet_data))

        examples = class1_examples + class2_examples
        df = pd.DataFrame(examples)

        for id_, example in enumerate(examples):
            if not isinstance(example, dict):
                # Convert the example to a dictionary if it's not
                example = {"example": example}
            yield id_, example

    def _generate_examples_from_class1(self, csv_filepath, geojson_filepath):
          columns_to_extract = ["OBJECTID", "X", "Y"]  # Remove "geometry" from columns_to_extract
          csv_data = pd.read_csv(csv_filepath)

          with open(geojson_filepath, 'r') as file:
              geojson_dict = json.load(file)
          gdf = gpd.GeoDataFrame.from_features(geojson_dict['features'], crs="EPSG:4326")  # Specify the CRS if known
          merged_data = gdf.merge(csv_data, on='OBJECTID')
          final_data = merged_data[columns_to_extract + ['geometry']]  # Include 'geometry' in the final_data
          for id_, row in final_data.iterrows():
              example = row.to_dict()
              yield id_, example





    def _generate_examples_from_class2(self, csv_filepath2):
        csv_data2 = pd.read_csv(csv_filepath2)


        columns_to_extract = [
            "streetaddress", "city", "facilityid", "present", "genus", "species",
            "commonname", "diameterin", "condition",  "neighborhood", "program", "plantingw",
            "plantingcond", "underpwerlins", "GlobalID", "created_user", "last_edited_user", "isoprene", "monoterpene",
             "monoterpene", "vocs", "coremoved_ozperyr", "coremoved_dolperyr",
            "o3removed_ozperyr", "o3removed_dolperyr", "no2removed_ozperyr", "no2removed_dolperyr",
            "so2removed_ozperyr", "so2removed_dolperyr", "pm10removed_ozperyr", "pm10removed_dolperyr",
            "pm25removed_ozperyr", "o2production_lbperyr", "replacevalue_dol", "carbonstorage_lb",
            "carbonstorage_dol", "grosscarseq_lbperyr", "grosscarseq_dolperyr", "polremoved_ozperyr", "polremoved_dolperyr",
            "totannbenefits_dolperyr", "leafarea_sqft", "potevapotran_cuftperyr", "evaporation_cuftperyr",
            "transpiration_cuftperyr", "h2ointercept_cuftperyr",
             "carbonavoid_lbperyr", "carbonavoid_dolperyr", "heating_mbtuperyr",
            "heating_dolperyrmbtu", "heating_kwhperyr", "heating_dolperyrmwh", "cooling_kwhperyr",
            "cooling_dolperyr", "totalenerg_dolperyr",
        ]

        final_data = csv_data2[columns_to_extract]
        for id_, row in final_data.iterrows():
            example = row.to_dict()
            non_empty_example = {key: value for key, value in example.items() if pd.notna(value)}
            yield id_, example


    def _generate_examples_from_parquet(self, parquet_data):
        for id_, row in parquet_data.iterrows():
            # Check if the "image" column is present and not empty
            if "image" in row and "bytes" in row["image"]:
                # Decode the base64-encoded image bytes
                image_data = base64.b64decode(row["image"]["bytes"])
                example = {"image": image_data, "label": row["label"]}

                # Display the image
                image_bytes = example.get('image', None)
                if image_bytes:
                    img = mpimg.imread(io.BytesIO(image_bytes), format='PNG')  # Use 'PNG' instead of 'JPG'
                    plt.imshow(img)
                    plt.show()

                yield id_, example
            else:
                print(f"Skipping example {id_} as it has missing or invalid image data")



    def _correlation_analysis(self, df):
        correlation_matrix = df.corr()
        sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', linewidths=.5)
        plt.title("Correlation Analysis")
        plt.show()






# Create an instance of the DurhamTrees class
durham_trees_dataset = DurhamTrees(name='class1_domain1')

# Build the dataset
durham_trees_dataset.download_and_prepare()

# Access the dataset
dataset = durham_trees_dataset.as_dataset()

# Iterate through the dataset and display images
for example in dataset['train']:
    if "image" in example and example["image"] is not None and "bytes" in example["image"]:
        # Display the image
        image_data = base64.b64decode(example["image"]["bytes"])
        img = mpimg.imread(io.BytesIO(image_data), format='PNG')
        plt.imshow(img)
        plt.show()

# Create an instance of the DurhamTrees class for another configuration
durham_trees_dataset_another = DurhamTrees(name='class2_domain1')

# Build the dataset for the new instance
durham_trees_dataset_another.download_and_prepare()

# Access the dataset for the new instance
dataset_another = durham_trees_dataset_another.as_dataset()

# Iterate through the dataset for the new instance and display images
for example in dataset_another['train']:
    if "image" in example and example["image"] is not None and "bytes" in example["image"]:
        # Display the image
        image_data = base64.b64decode(example["image"]["bytes"])
        img = mpimg.imread(io.BytesIO(image_data), format='PNG')
        plt.imshow(img)
        plt.show()