# imports import seaborn as sns import matplotlib.pyplot as plt import numpy as np from polire import CustomInterpolator import xgboost from sklearn.ensemble import RandomForestRegressor from sklearn.linear_model import LinearRegression from sklearn.neighbors import KNeighborsRegressor from sklearn.gaussian_process import GaussianProcessRegressor from sklearn.gaussian_process.kernels import Matern # sample data X = [[0, 0], [0, 3], [3, 0], [3, 3]] y = [0, 1.5, 1.5, 3] X = np.array(X) y = np.array(y) for r in [ CustomInterpolator(xgboost.XGBRegressor()), CustomInterpolator(RandomForestRegressor()), CustomInterpolator(LinearRegression(normalize=True)), CustomInterpolator(KNeighborsRegressor(n_neighbors=3, weights="distance")), CustomInterpolator( GaussianProcessRegressor(normalize_y=True, kernel=Matern()) ), ]: r.fit(X, y) Z = r.predict_grid((0, 3), (0, 3)).reshape(100, 100) sns.heatmap(Z) plt.title(r) plt.show() plt.close()