# imports import seaborn as sns import matplotlib.pyplot as plt import numpy as np import pandas as pd from GPy.kern import Matern32 from polire import ( Random, Trend, Spline, IDW, Kriging, SpatialAverage, NaturalNeighbor, GP, ) # sample data X = [[0, 0], [0, 3], [3, 0], [3, 3]] y = [0, 1.5, 1.5, 3] X = np.array(X) y = np.array(y) regressors = [ Random(), SpatialAverage(), Spline(kx=1, ky=1), Trend(), IDW(coordinate_type="Geographic"), Kriging(), GP(Matern32(input_dim=2)), ] def test_grid(): # Gridded interpolation testing print("\nTesting on small dataset") for r in regressors: r.fit(X, y) y_pred = r.predict_grid() Z = y_pred sns.heatmap(Z) plt.title(r) plt.show() plt.close() print("\nTesting completed on a small dataset\n") print("\nTesting on a reasonable dataset") df = pd.read_csv("tests/data/30-03-18.csv") X1 = np.array(df[["longitude", "latitude"]]) y1 = np.array(df["value"]) for r in regressors: r.fit(X1, y1) y_pred = r.predict_grid() Z = y_pred sns.heatmap(Z) plt.title(r) plt.show() plt.close() def test_point(): # Pointwise interpolation testing for r in regressors: r.fit(X, y) test_data = [ [0, 0], [0, 3], [3, 0], [3, 3], [1, 1], [1.5, 1.5], [2, 2], [2.5, 2.5], [4, 4], ] y_pred = r.predict(np.array(test_data)) print(r) print(y_pred) def test_nn(): print("\nNatural Neighbors - Point Wise") nn = NaturalNeighbor() df = pd.read_csv("tests/data/30-03-18.csv") X = np.array(df[["longitude", "latitude"]]) y = np.array(df["value"]) nn.fit(X, y) test_data = [[77.16, 28.70], X[0]] y_pred = nn.predict(np.array(test_data)) print(y_pred) del nn print("\nNatural Neighbors - Entire Grid") # Suggested by Apoorv as a temporary fix # Patience pays nn = NaturalNeighbor() nn.fit(X, y) y_pred = nn.predict_grid() print(y_pred) sns.heatmap(y_pred) plt.title(nn) plt.show() plt.close() if __name__ == "__main__": print("Testing Gridded Interpolation") test_grid() print("\nTesting Pointwise Interpolation") test_point() print("\nTesting Natural Neighbors") test_nn()