XingjianL commited on
Commit
9aab067
·
1 Parent(s): 973aa5c

add camera parameters

Browse files
Files changed (1) hide show
  1. example_load.py +56 -46
example_load.py CHANGED
@@ -2,29 +2,18 @@ from datasets import load_dataset
2
  import matplotlib.pyplot as plt
3
  import numpy as np
4
  from scipy import stats
5
- # similar to cityscapes for mmsegmentation
6
- # class name, (new_id, img_id)
7
- semantic_map = {
8
- "bacterial_spot": (0, 5),
9
- "early_blight": (1, 10),
10
- "late_blight": (2, 20),
11
- "leaf_mold": (3, 25),
12
- "septoria_leaf_spot": (4,30),
13
- "spider_mites": (5,35),
14
- "target_spot": (6,40),
15
- "mosaic_virus": (7,45),
16
- "yellow_leaf_curl_virus":(8,50),
17
- "healthy_leaf_pv": (9, 15), # plant village healthy leaf
18
- "healthy_leaf_t": (9, 255), # texture leaf (healthy)
19
- "background": (10, 0),
20
- "tomato": (11, 121),
21
- "stem": (12, 111),
22
- "wood_rod": (13, 101),
23
- "red_band": (14, 140),
24
- "yellow_flower": (15, 131)
25
- }
26
 
27
- def maj_vote(img,x,y,n=3):
 
 
 
 
 
 
 
 
 
 
28
  half = n // 2
29
  x_min, x_max = max(0, x - half), min(img.shape[1], x + half + 1)
30
  y_min, y_max = max(0, y - half), min(img.shape[0], y + half + 1)
@@ -39,7 +28,7 @@ def maj_vote(img,x,y,n=3):
39
  else:
40
  return semantic_map["background"][0]
41
 
42
- def color_to_id(img_semantic, top_k_disease = 10, semantic_map = semantic_map):
43
  semantic_id_img = np.ones(img_semantic.shape) * 255
44
  disease_counts = []
45
  # remap rendered color to semantic id
@@ -57,32 +46,53 @@ def color_to_id(img_semantic, top_k_disease = 10, semantic_map = semantic_map):
57
  # Apply majority voting for unlabeled pixels (needed as the rendering process can blend pixels)
58
  unknown_mask = (semantic_id_img == 255)
59
  for y,x in np.argwhere(unknown_mask):
60
- semantic_id_img[y, x] = maj_vote(semantic_id_img, x, y, 3)
61
  return semantic_id_img
62
 
63
-
64
- dataset = load_dataset("xingjianli/tomatotest", 'sample',trust_remote_code=True, num_proc=4)
65
- print(dataset["train"][0])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66
 
67
 
68
- left_rgb_img = dataset["train"][0]['left_rgb']
69
- right_rgb_img = dataset["train"][0]['right_rgb']
70
- left_semantic_img = np.asarray(dataset["train"][0]['left_semantic'])
71
- left_instance_img = np.asarray(dataset["train"][0]['left_instance'])
72
- left_depth_img = np.asarray(dataset["train"][0]['left_depth'])
73
- right_depth_img = np.asarray(dataset["train"][0]['right_depth'])
74
- plt.subplot(231)
75
- plt.imshow(left_rgb_img)
76
- plt.subplot(232)
77
- plt.imshow(right_rgb_img)
78
- plt.subplot(233)
79
- plt.imshow(color_to_id(left_semantic_img))
80
- plt.subplot(234)
81
- plt.imshow(np.where(left_depth_img>500,0,left_depth_img))
82
- plt.subplot(235)
83
- plt.imshow(np.where(right_depth_img>500,0,right_depth_img))
84
- plt.subplot(236)
85
- plt.imshow(left_instance_img)
86
- plt.show()
87
 
88
 
 
2
  import matplotlib.pyplot as plt
3
  import numpy as np
4
  from scipy import stats
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
 
6
+ # Additional Information for Depth and Camera Parameters
7
+ #
8
+ # Creating intrinsics for the camera
9
+ # fov = 95.452621 # degrees
10
+ # fx = (2448 / np.tan((fov*np.pi/180.0)/2.0)) / 2
11
+ # intrinsics = o3d.camera.PinholeCameraIntrinsic(2448,2048,fx,fx,2448/2,2048/2)
12
+ # baseline = 3.88112 # cm
13
+ # Note: Depth is also in centimeters
14
+ #
15
+
16
+ def maj_vote(img,x,y,semantic_map,n=3):
17
  half = n // 2
18
  x_min, x_max = max(0, x - half), min(img.shape[1], x + half + 1)
19
  y_min, y_max = max(0, y - half), min(img.shape[0], y + half + 1)
 
28
  else:
29
  return semantic_map["background"][0]
30
 
31
+ def color_to_id(img_semantic, semantic_map, top_k_disease = 10):
32
  semantic_id_img = np.ones(img_semantic.shape) * 255
33
  disease_counts = []
34
  # remap rendered color to semantic id
 
46
  # Apply majority voting for unlabeled pixels (needed as the rendering process can blend pixels)
47
  unknown_mask = (semantic_id_img == 255)
48
  for y,x in np.argwhere(unknown_mask):
49
+ semantic_id_img[y, x] = maj_vote(semantic_id_img, x, y, semantic_map, 3)
50
  return semantic_id_img
51
 
52
+ if __name__ == "__main__":
53
+ # similar to cityscapes for mmsegmentation
54
+ # class name, (new_id, img_id)
55
+ semantic_map = {
56
+ "bacterial_spot": (0, 5),
57
+ "early_blight": (1, 10),
58
+ "late_blight": (2, 20),
59
+ "leaf_mold": (3, 25),
60
+ "septoria_leaf_spot": (4,30),
61
+ "spider_mites": (5,35),
62
+ "target_spot": (6,40),
63
+ "mosaic_virus": (7,45),
64
+ "yellow_leaf_curl_virus":(8,50),
65
+ "healthy_leaf_pv": (9, 15), # plant village healthy leaf
66
+ "healthy_leaf_t": (9, 255), # texture leaf (healthy)
67
+ "background": (10, 0),
68
+ "tomato": (11, 121),
69
+ "stem": (12, 111),
70
+ "wood_rod": (13, 101),
71
+ "red_band": (14, 140),
72
+ "yellow_flower": (15, 131)
73
+ }
74
+ dataset = load_dataset("xingjianli/tomatotest", 'sample',trust_remote_code=True, num_proc=4)
75
+ print(dataset["train"][0])
76
 
77
 
78
+ left_rgb_img = dataset["train"][0]['left_rgb']
79
+ right_rgb_img = dataset["train"][0]['right_rgb']
80
+ left_semantic_img = np.asarray(dataset["train"][0]['left_semantic'])
81
+ left_instance_img = np.asarray(dataset["train"][0]['left_instance'])
82
+ left_depth_img = np.asarray(dataset["train"][0]['left_depth'])
83
+ right_depth_img = np.asarray(dataset["train"][0]['right_depth'])
84
+ plt.subplot(231)
85
+ plt.imshow(left_rgb_img)
86
+ plt.subplot(232)
87
+ plt.imshow(right_rgb_img)
88
+ plt.subplot(233)
89
+ plt.imshow(color_to_id(left_semantic_img, semantic_map))
90
+ plt.subplot(234)
91
+ plt.imshow(np.where(left_depth_img>500,0,left_depth_img))
92
+ plt.subplot(235)
93
+ plt.imshow(np.where(right_depth_img>500,0,right_depth_img))
94
+ plt.subplot(236)
95
+ plt.imshow(left_instance_img)
96
+ plt.show()
97
 
98