from qwikidata.entity import WikidataItem | |
from qwikidata.json_dump import WikidataJsonDump | |
import pyarrow as pa | |
import pyarrow.parquet as pq | |
import pandas as pd | |
# create an instance of WikidataJsonDump | |
wjd_dump_path = "wikidata-20240304-all.json.bz2" | |
wjd = WikidataJsonDump(wjd_dump_path) | |
# Create an empty list to store the dictionaries | |
data = [] | |
# # Iterate over the entities in wjd and add them to the list | |
for ii, entity_dict in enumerate(wjd): | |
if ii > 1000: | |
break | |
if entity_dict["type"] == "item": | |
data.append(entity_dict) | |
# Create a Parquet schema for the [Wikidata Snak Format](https://doc.wikimedia.org/Wikibase/master/php/docs_topics_json.html#json_snaks) | |
# { | |
# "snaktype": "value", | |
# "property": "P17", | |
# "datatype": "wikibase-item", | |
# "datavalue": { | |
# "value": { | |
# "entity-type": "item", | |
# "id": "Q30", | |
# "numeric-id": 30 | |
# }, | |
# "type": "wikibase-entityid" | |
# } | |
snak = pa.struct([ | |
("snaktype", pa.string()), | |
("property", pa.string()), | |
("datatype", pa.string()), | |
("datavalue", pa.struct([ | |
("value", pa.struct([ | |
("entity-type", pa.string()), | |
("id", pa.string()), | |
("numeric-id", pa.int64()) | |
])), | |
("type", pa.string()) | |
])) | |
]) | |
# TODO: Schema for Data Set | |
# Based on the [Wikidata JSON Format Docs](https://doc.wikimedia.org/Wikibase/master/php/docs_topics_json.html) | |
# Create a schema for the table | |
# { | |
# "id": "Q60", | |
# "type": "item", | |
# "labels": {}, | |
# "descriptions": {}, | |
# "aliases": {}, | |
# "claims": {}, | |
# "sitelinks": {}, | |
# "lastrevid": 195301613, | |
# "modified": "2020-02-10T12:42:02Z" | |
#} | |
schema = pa.schema([ | |
("id", pa.string()), | |
("type", pa.string()), | |
# { | |
# "labels": { | |
# "en": { | |
# "language": "en", | |
# "value": "New York City" | |
# }, | |
# "ar": { | |
# "language": "ar", | |
# "value": "\u0645\u062f\u064a\u0646\u0629 \u0646\u064a\u0648 \u064a\u0648\u0631\u0643" | |
# } | |
# } | |
("labels", pa.map_(pa.string(), pa.struct([ | |
("language", pa.string()), | |
("value", pa.string()) | |
]))), | |
# "descriptions": { | |
# "en": { | |
# "language": "en", | |
# "value": "largest city in New York and the United States of America" | |
# }, | |
# "it": { | |
# "language": "it", | |
# "value": "citt\u00e0 degli Stati Uniti d'America" | |
# } | |
# } | |
("descriptions", pa.map_(pa.string(), pa.struct([ | |
("language", pa.string()), | |
("value", pa.string()) | |
]))), | |
# "aliases": { | |
# "en": [ | |
# { | |
# "language": "en",pa.string | |
# "value": "New York" | |
# } | |
# ], | |
# "fr": [ | |
# { | |
# "language": "fr", | |
# "value": "New York City" | |
# }, | |
# { | |
# "language": "fr", | |
# "value": "NYC" | |
# }, | |
# { | |
# "language": "fr", | |
# "value": "The City" | |
# }, | |
# { | |
# "language": "fr", | |
# "value": "La grosse pomme" | |
# } | |
# ] | |
# } | |
# } | |
("aliases", pa.map_(pa.string(), pa.list_(pa.struct([ | |
("language", pa.string()), | |
("value", pa.string()) | |
])))), | |
# { | |
# "claims": { | |
# "P17": [ | |
# { | |
# "id": "q60$5083E43C-228B-4E3E-B82A-4CB20A22A3FB", | |
# "mainsnak": {}, | |
# "type": "statement", | |
# "rank": "normal", | |
# "qualifiers": { | |
# "P580": [], | |
# "P5436": [] | |
# }, | |
# "references": [ | |
# { | |
# "hash": "d103e3541cc531fa54adcaffebde6bef28d87d32", | |
# "snaks": [] | |
# } | |
# ] | |
# } | |
# ] | |
# } | |
# } | |
("claims", pa.map_(pa.string(), pa.list_(snak))), | |
("sitelinks", pa.struct([ | |
("site", pa.string()), | |
("title", pa.string()) | |
])), | |
("lastrevid", pa.int64()), | |
("modified", pa.string()) | |
]) | |
# Create a table from the list of dictionaries and the schema | |
table = pa.Table.from_pandas(pd.DataFrame(data), schema=schema) | |
# table = pa.Table.from_pandas(pd.DataFrame(wjd)) | |
# Write the table to disk as parquet | |
parquet_path = "wikidata-20240304-all.parquet" | |
pq.write_table(table, parquet_path) | |