import pandas as pd import joblib from sklearn.preprocessing import StandardScaler, OneHotEncoder from sklearn.compose import ColumnTransformer from sklearn.model_selection import train_test_split, RandomizedSearchCV from sklearn.linear_model import Ridge from sklearn.pipeline import Pipeline from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score # Read the uploaded file df = pd.read_csv('/insurance (1).csv') # Define the target variable y = df['charges'] # Define the feature columns numerical_columns = ['age', 'bmi', 'children'] categorical_columns = ['sex', 'smoker', 'region'] # Define feature matrix X X = df[numerical_columns + categorical_columns] # Split the data Xtrain, Xtest, ytrain, ytest = train_test_split( X, y, test_size=0.2, random_state=42 ) # Create a column transformer for preprocessing preprocessor = ColumnTransformer( transformers=[ ('num', StandardScaler(), numerical_columns), # Standard scaling for numerical columns ('cat', OneHotEncoder(handle_unknown='ignore'), categorical_columns) # One-hot encoding for categorical columns ] ) # Create a Ridge regression model pipeline ridge_pipeline = Pipeline([ ('preprocessor', preprocessor), ('ridge', Ridge()) ]) # Define a parameter distribution for hyperparameter tuning param_distribution = { 'ridge__alpha': [0.001, 0.01, 0.1, 0.5, 1, 5, 10] } # Perform hyperparameter tuning using RandomizedSearchCV random_search = RandomizedSearchCV(ridge_pipeline, param_distribution, n_iter=5, cv=5) random_search.fit(Xtrain, ytrain) # Model evaluation for testing set y_pred = random_search.best_estimator_.predict(Xtest) mae = mean_absolute_error(ytest, y_pred) mse = mean_squared_error(ytest, y_pred) r2 = r2_score(ytest, y_pred) print("The model performance for the testing set") print("--------------------------------------") print('MAE is {}'.format(mae)) print('MSE is {}'.format(mse)) print('R2 score is {}'.format(r2)) # Save the best model saved_model_path = "model.joblib" joblib.dump(random_search.best_estimator_, saved_model_path)