File size: 2,077 Bytes
a3b6b0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d11e7d6
a3b6b0c
 
 
 
 
 
 
 
 
 
 
 
 
d11e7d6
 
 
 
 
a3b6b0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d11e7d6
a3b6b0c
 
 
 
 
d11e7d6
a3b6b0c
 
 
d11e7d6
a3b6b0c
 
 
 
 
d11e7d6
a3b6b0c
 
 
d11e7d6
a3b6b0c
 
 
d11e7d6
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
---
annotations_creators: []
language: en
license: cc0-1.0
task_categories:
- object-detection
task_ids: []
pretty_name: hard-hat-detection
tags:
- fiftyone
- image
- object-detection
dataset_summary: '



  ![image/png](dataset_preview.gif)



  This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 5000 samples.


  ## Installation


  If you haven''t already, install FiftyOne:


  ```bash

  pip install -U fiftyone

  ```


  ## Usage


  ```python

  import fiftyone as fo

  import fiftyone.utils.huggingface as fouh


  # Load the dataset

  # Note: other available arguments include ''split'', ''max_samples'', etc

  dataset = fouh.load_from_hub("voxel51/hard-hat-detection")


  # Launch the App

  session = fo.launch_app(dataset)

  ```

  '
---

# Dataset Card for hard-hat-detection

This dataset, contains 5000 images with bounding box annotations in the PASCAL VOC format for these 3 classes:

- Helmet
- Person
- Head




![image/png](dataset_preview.gif)


This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 5000 samples.

## Installation

If you haven't already, install FiftyOne:

```bash
pip install -U fiftyone
```

## Usage

```python
import fiftyone as fo
import fiftyone.utils.huggingface as fouh

# Load the dataset
# Note: other available arguments include 'split', 'max_samples', etc
dataset = fouh.load_from_hub("dgural/hard-hat-detection")

# Launch the App
session = fo.launch_app(dataset)
```


## Dataset Details

### Dataset Description

Improve workplace safety by detecting people and hard hats on 5k images with bbox annotations.


- **Language(s) (NLP):** en
- **License:** cc0-1.0

### Dataset Sources 



- **Repository:** https://www.kaggle.com/datasets/andrewmvd/hard-hat-detection/data



### Source Data

Dataset taken from https://www.kaggle.com/datasets/andrewmvd/hard-hat-detection/data  and created by [andrewmvd](https://www.kaggle.com/andrewmvd)



## Citation 

**BibTeX:**

@misc{make ml,
title={Hard Hat Dataset},
url={https://makeml.app/datasets/hard-hat-workers},
journal={Make ML}}