|
import os |
|
import datasets |
|
from datasets.tasks import ImageClassification |
|
from .classes import FRUITS30_CLASSES |
|
|
|
class fruits30(datasets.GeneratorBasedBuilder): |
|
|
|
def _info(self): |
|
assert len(FRUITS30_CLASSES) == 30 |
|
return datasets.DatasetInfo( |
|
description="The fruits-30 is an image dataset for fruit image classification task." |
|
" It contains high-quality images of 30 types of fruit with annotation using segmentation.", |
|
features=datasets.Features( |
|
{ |
|
"image": datasets.Image(), |
|
"label": datasets.ClassLabel(names=list(FRUITS30_CLASSES.values())), |
|
} |
|
), |
|
homepage="https://github.com/VinayHajare/Fruit-Image-Dataset", |
|
task_templates=[ImageClassification(image_column="image", label_column="label")], |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
data_dir = dl_manager.download("./FruitImageDataset") |
|
|
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"data_dir": data_dir, |
|
"split": "train", |
|
}, |
|
) |
|
] |
|
|
|
def _generate_examples(self, data_dir, split): |
|
"""Yields examples.""" |
|
idx = 0 |
|
for root, dirs, files in os.walk(data_dir): |
|
for file in files: |
|
if file.endswith(".jpg"): |
|
|
|
_, synset_id = os.path.splitext(file)[0].rsplit("_", 1) |
|
label = FRUITS30_CLASSES[synset_id] |
|
image_path = os.path.join(root, file) |
|
with open(image_path, "rb") as image_file: |
|
ex = {"image": {"path": image_path, "bytes": image_file.read()}, "label": label} |
|
yield idx, ex |
|
idx += 1 |
|
|