Datasets:
Tasks:
Token Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
named-entity-recognition
Languages:
French
Size:
10K - 100K
License:
update dataset card
Browse files
README.md
CHANGED
@@ -30,22 +30,22 @@ dataset_card_content: "\n---\ndataset_info:\n features:\n - name: sample_id\n
|
|
30 |
\ it is advisable to address the imbalanced nature of the dataset to ensure optimal\
|
31 |
\ training outcomes.\n\n## Dataset Details\n\n### Dataset Description\n\n<!-- Provide\
|
32 |
\ a longer summary of what this dataset is. -->\n- **Curated by:** typica.ai\n-\
|
33 |
-
\ **License:** cc-by-4.0
|
34 |
-
\
|
35 |
-
\
|
36 |
-
\
|
37 |
-
\
|
38 |
-
\
|
39 |
-
\
|
40 |
-
|
41 |
-
\
|
42 |
-
|
43 |
-
\
|
44 |
-
\
|
45 |
-
\
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
\ 'tokens': ['jonas',\n 'salk',\n 'médecin',\n 'm.d.',\n '1938',\n 'et',\n\
|
50 |
\ 'inventeur',\n 'du',\n 'vaccin',\n 'contre',\n 'la',\n 'poliomyélite',\n\
|
51 |
\ '.'],\n 'ner_tags': ['B-PER',\n 'I-PER',\n 'O',\n 'O',\n 'O',\n 'O',\n \
|
@@ -72,8 +72,8 @@ dataset_card_content: "\n---\ndataset_info:\n features:\n - name: sample_id\n
|
|
72 |
\ that should go in this section. -->\nIf you use this dataset, please cite:\n\n\
|
73 |
```bibtex\n@misc{MedicalNER_Fr2024,\n author = {Hicham Assoudi},\n title = {MedicalNER_Fr:\
|
74 |
\ Named Entity Recognition Dataset for the French language in the medical and healthcare\
|
75 |
-
\ domain},\n note = {Created by Hicham Assoudi, Ph.D. at Typica.ai
|
76 |
-
\ Hugging Face},\n year = {2024},\n url = {https://huggingface.co/datasets/TypicaAI/MedicalNER_Fr}\n\
|
77 |
}\n```\n\n## Dataset Contact\n\nFeel free to reach out to us at [email protected]\
|
78 |
\ if you have any questions or comments.\n"
|
79 |
description: 'MedicalNER_Fr: Named Entity Recognition Dataset for the French language
|
@@ -92,7 +92,7 @@ The MultiCoNER V2 dataset has undergone filtration to exclusively encompass Fren
|
|
92 |
|
93 |
<!-- Provide a longer summary of what this dataset is. -->
|
94 |
- **Curated by:** typica.ai
|
95 |
-
- **License:** cc-by-4.0
|
96 |
|
97 |
|
98 |
## Uses
|
@@ -126,7 +126,7 @@ The dataset is designed to train Named Entity Recognition models for the French
|
|
126 |
- CW: 167
|
127 |
- ORG: 83
|
128 |
- GRP: 14
|
129 |
-
|
130 |
### Example
|
131 |
|
132 |
```json
|
@@ -197,7 +197,7 @@ If you use this dataset, please cite:
|
|
197 |
@misc{MedicalNER_Fr2024,
|
198 |
author = {Hicham Assoudi},
|
199 |
title = {MedicalNER_Fr: Named Entity Recognition Dataset for the French language in the medical and healthcare domain},
|
200 |
-
note = {Created by Hicham Assoudi, Ph.D. at Typica.ai, published on Hugging Face},
|
201 |
year = {2024},
|
202 |
url = {https://huggingface.co/datasets/TypicaAI/MedicalNER_Fr}
|
203 |
}
|
|
|
30 |
\ it is advisable to address the imbalanced nature of the dataset to ensure optimal\
|
31 |
\ training outcomes.\n\n## Dataset Details\n\n### Dataset Description\n\n<!-- Provide\
|
32 |
\ a longer summary of what this dataset is. -->\n- **Curated by:** typica.ai\n-\
|
33 |
+
\ **License:** cc-by-4.0\n\n\n## Uses\n\n<!-- Address questions around how the dataset\
|
34 |
+
\ is intended to be used. -->\nThe dataset is designed to train Named Entity Recognition\
|
35 |
+
\ models for the French language in the medical and healthcare domain.\n\n\n## Dataset\
|
36 |
+
\ Structure\n\n<!-- This section provides a description of the dataset fields, and\
|
37 |
+
\ additional information about the dataset structure such as criteria used to create\
|
38 |
+
\ the splits, relationships between data points, etc. -->\n1. **sample_id**: A UUID\
|
39 |
+
\ generated for each example.\n2. **tokens**: A list of tokens (words) in the sentence.\n\
|
40 |
+
3. **ner_tags**: A list of named entity recognition (NER) tags corresponding to\
|
41 |
+
\ each token. These tags indicate the entity type of each token.\n4. **text**: Text\
|
42 |
+
\ formed by combining the tokens.\n5. **ner_tags_span**: A list of spans for the\
|
43 |
+
\ NER tags. Each span is a list containing:\n - The NER tag (entity type).\n \
|
44 |
+
\ - The start position of the entity in the text.\n - The end position of the\
|
45 |
+
\ entity in the text.\n\n### Dataset Tags Count:\n\n- AnatomicalStructure: 4685\n\
|
46 |
+
- Disease: 4658\n- Medication/Vaccine: 4226\n- MedicalProcedure: 3170\n- Symptom:\
|
47 |
+
\ 1763\n- LOC: 525\n- PER: 521\n- PROD: 305\n- CW: 167\n- ORG: 83\n- GRP: 14\n\n\
|
48 |
+
### Example\n\n```json\n{'sample_id': '60a82e36-4d34-4e16-aadc-2078699476f7',\n\
|
49 |
\ 'tokens': ['jonas',\n 'salk',\n 'médecin',\n 'm.d.',\n '1938',\n 'et',\n\
|
50 |
\ 'inventeur',\n 'du',\n 'vaccin',\n 'contre',\n 'la',\n 'poliomyélite',\n\
|
51 |
\ '.'],\n 'ner_tags': ['B-PER',\n 'I-PER',\n 'O',\n 'O',\n 'O',\n 'O',\n \
|
|
|
72 |
\ that should go in this section. -->\nIf you use this dataset, please cite:\n\n\
|
73 |
```bibtex\n@misc{MedicalNER_Fr2024,\n author = {Hicham Assoudi},\n title = {MedicalNER_Fr:\
|
74 |
\ Named Entity Recognition Dataset for the French language in the medical and healthcare\
|
75 |
+
\ domain},\n note = {Created by Hicham Assoudi, Ph.D. at Typica.ai (url{https://typica.ai/}),\
|
76 |
+
\ published on Hugging Face},\n year = {2024},\n url = {https://huggingface.co/datasets/TypicaAI/MedicalNER_Fr}\n\
|
77 |
}\n```\n\n## Dataset Contact\n\nFeel free to reach out to us at [email protected]\
|
78 |
\ if you have any questions or comments.\n"
|
79 |
description: 'MedicalNER_Fr: Named Entity Recognition Dataset for the French language
|
|
|
92 |
|
93 |
<!-- Provide a longer summary of what this dataset is. -->
|
94 |
- **Curated by:** typica.ai
|
95 |
+
- **License:** cc-by-4.0
|
96 |
|
97 |
|
98 |
## Uses
|
|
|
126 |
- CW: 167
|
127 |
- ORG: 83
|
128 |
- GRP: 14
|
129 |
+
|
130 |
### Example
|
131 |
|
132 |
```json
|
|
|
197 |
@misc{MedicalNER_Fr2024,
|
198 |
author = {Hicham Assoudi},
|
199 |
title = {MedicalNER_Fr: Named Entity Recognition Dataset for the French language in the medical and healthcare domain},
|
200 |
+
note = {Created by Hicham Assoudi, Ph.D. at Typica.ai (url{https://typica.ai/}), published on Hugging Face},
|
201 |
year = {2024},
|
202 |
url = {https://huggingface.co/datasets/TypicaAI/MedicalNER_Fr}
|
203 |
}
|