hassoudi commited on
Commit
e425bfe
·
verified ·
1 Parent(s): 99bae93

update dataset card

Browse files
Files changed (1) hide show
  1. README.md +21 -21
README.md CHANGED
@@ -30,22 +30,22 @@ dataset_card_content: "\n---\ndataset_info:\n features:\n - name: sample_id\n
30
  \ it is advisable to address the imbalanced nature of the dataset to ensure optimal\
31
  \ training outcomes.\n\n## Dataset Details\n\n### Dataset Description\n\n<!-- Provide\
32
  \ a longer summary of what this dataset is. -->\n- **Curated by:** typica.ai\n-\
33
- \ **License:** cc-by-4.0 \n\n\n## Uses\n\n<!-- Address questions around how the\
34
- \ dataset is intended to be used. -->\nThe dataset is designed to train Named Entity\
35
- \ Recognition models for the French language in the medical and healthcare domain.\n\
36
- \n\n## Dataset Structure\n\n<!-- This section provides a description of the dataset\
37
- \ fields, and additional information about the dataset structure such as criteria\
38
- \ used to create the splits, relationships between data points, etc. -->\n1. **sample_id**:\
39
- \ A UUID generated for each example.\n2. **tokens**: A list of tokens (words) in\
40
- \ the sentence.\n3. **ner_tags**: A list of named entity recognition (NER) tags\
41
- \ corresponding to each token. These tags indicate the entity type of each token.\n\
42
- 4. **text**: Text formed by combining the tokens.\n5. **ner_tags_span**: A list\
43
- \ of spans for the NER tags. Each span is a list containing:\n - The NER tag (entity\
44
- \ type).\n - The start position of the entity in the text.\n - The end position\
45
- \ of the entity in the text.\n\n### Dataset Tags Count:\n\n- AnatomicalStructure:\
46
- \ 4685\n- Disease: 4658\n- Medication/Vaccine: 4226\n- MedicalProcedure: 3170\n\
47
- - Symptom: 1763\n- LOC: 525\n- PER: 521\n- PROD: 305\n- CW: 167\n- ORG: 83\n- GRP:\
48
- \ 14\n \n### Example\n\n```json\n{'sample_id': '60a82e36-4d34-4e16-aadc-2078699476f7',\n\
49
  \ 'tokens': ['jonas',\n 'salk',\n 'médecin',\n 'm.d.',\n '1938',\n 'et',\n\
50
  \ 'inventeur',\n 'du',\n 'vaccin',\n 'contre',\n 'la',\n 'poliomyélite',\n\
51
  \ '.'],\n 'ner_tags': ['B-PER',\n 'I-PER',\n 'O',\n 'O',\n 'O',\n 'O',\n \
@@ -72,8 +72,8 @@ dataset_card_content: "\n---\ndataset_info:\n features:\n - name: sample_id\n
72
  \ that should go in this section. -->\nIf you use this dataset, please cite:\n\n\
73
  ```bibtex\n@misc{MedicalNER_Fr2024,\n author = {Hicham Assoudi},\n title = {MedicalNER_Fr:\
74
  \ Named Entity Recognition Dataset for the French language in the medical and healthcare\
75
- \ domain},\n note = {Created by Hicham Assoudi, Ph.D. at Typica.ai, published on\
76
- \ Hugging Face},\n year = {2024},\n url = {https://huggingface.co/datasets/TypicaAI/MedicalNER_Fr}\n\
77
  }\n```\n\n## Dataset Contact\n\nFeel free to reach out to us at [email protected]\
78
  \ if you have any questions or comments.\n"
79
  description: 'MedicalNER_Fr: Named Entity Recognition Dataset for the French language
@@ -92,7 +92,7 @@ The MultiCoNER V2 dataset has undergone filtration to exclusively encompass Fren
92
 
93
  <!-- Provide a longer summary of what this dataset is. -->
94
  - **Curated by:** typica.ai
95
- - **License:** cc-by-4.0
96
 
97
 
98
  ## Uses
@@ -126,7 +126,7 @@ The dataset is designed to train Named Entity Recognition models for the French
126
  - CW: 167
127
  - ORG: 83
128
  - GRP: 14
129
-
130
  ### Example
131
 
132
  ```json
@@ -197,7 +197,7 @@ If you use this dataset, please cite:
197
  @misc{MedicalNER_Fr2024,
198
  author = {Hicham Assoudi},
199
  title = {MedicalNER_Fr: Named Entity Recognition Dataset for the French language in the medical and healthcare domain},
200
- note = {Created by Hicham Assoudi, Ph.D. at Typica.ai, published on Hugging Face},
201
  year = {2024},
202
  url = {https://huggingface.co/datasets/TypicaAI/MedicalNER_Fr}
203
  }
 
30
  \ it is advisable to address the imbalanced nature of the dataset to ensure optimal\
31
  \ training outcomes.\n\n## Dataset Details\n\n### Dataset Description\n\n<!-- Provide\
32
  \ a longer summary of what this dataset is. -->\n- **Curated by:** typica.ai\n-\
33
+ \ **License:** cc-by-4.0\n\n\n## Uses\n\n<!-- Address questions around how the dataset\
34
+ \ is intended to be used. -->\nThe dataset is designed to train Named Entity Recognition\
35
+ \ models for the French language in the medical and healthcare domain.\n\n\n## Dataset\
36
+ \ Structure\n\n<!-- This section provides a description of the dataset fields, and\
37
+ \ additional information about the dataset structure such as criteria used to create\
38
+ \ the splits, relationships between data points, etc. -->\n1. **sample_id**: A UUID\
39
+ \ generated for each example.\n2. **tokens**: A list of tokens (words) in the sentence.\n\
40
+ 3. **ner_tags**: A list of named entity recognition (NER) tags corresponding to\
41
+ \ each token. These tags indicate the entity type of each token.\n4. **text**: Text\
42
+ \ formed by combining the tokens.\n5. **ner_tags_span**: A list of spans for the\
43
+ \ NER tags. Each span is a list containing:\n - The NER tag (entity type).\n \
44
+ \ - The start position of the entity in the text.\n - The end position of the\
45
+ \ entity in the text.\n\n### Dataset Tags Count:\n\n- AnatomicalStructure: 4685\n\
46
+ - Disease: 4658\n- Medication/Vaccine: 4226\n- MedicalProcedure: 3170\n- Symptom:\
47
+ \ 1763\n- LOC: 525\n- PER: 521\n- PROD: 305\n- CW: 167\n- ORG: 83\n- GRP: 14\n\n\
48
+ ### Example\n\n```json\n{'sample_id': '60a82e36-4d34-4e16-aadc-2078699476f7',\n\
49
  \ 'tokens': ['jonas',\n 'salk',\n 'médecin',\n 'm.d.',\n '1938',\n 'et',\n\
50
  \ 'inventeur',\n 'du',\n 'vaccin',\n 'contre',\n 'la',\n 'poliomyélite',\n\
51
  \ '.'],\n 'ner_tags': ['B-PER',\n 'I-PER',\n 'O',\n 'O',\n 'O',\n 'O',\n \
 
72
  \ that should go in this section. -->\nIf you use this dataset, please cite:\n\n\
73
  ```bibtex\n@misc{MedicalNER_Fr2024,\n author = {Hicham Assoudi},\n title = {MedicalNER_Fr:\
74
  \ Named Entity Recognition Dataset for the French language in the medical and healthcare\
75
+ \ domain},\n note = {Created by Hicham Assoudi, Ph.D. at Typica.ai (url{https://typica.ai/}),\
76
+ \ published on Hugging Face},\n year = {2024},\n url = {https://huggingface.co/datasets/TypicaAI/MedicalNER_Fr}\n\
77
  }\n```\n\n## Dataset Contact\n\nFeel free to reach out to us at [email protected]\
78
  \ if you have any questions or comments.\n"
79
  description: 'MedicalNER_Fr: Named Entity Recognition Dataset for the French language
 
92
 
93
  <!-- Provide a longer summary of what this dataset is. -->
94
  - **Curated by:** typica.ai
95
+ - **License:** cc-by-4.0
96
 
97
 
98
  ## Uses
 
126
  - CW: 167
127
  - ORG: 83
128
  - GRP: 14
129
+
130
  ### Example
131
 
132
  ```json
 
197
  @misc{MedicalNER_Fr2024,
198
  author = {Hicham Assoudi},
199
  title = {MedicalNER_Fr: Named Entity Recognition Dataset for the French language in the medical and healthcare domain},
200
+ note = {Created by Hicham Assoudi, Ph.D. at Typica.ai (url{https://typica.ai/}), published on Hugging Face},
201
  year = {2024},
202
  url = {https://huggingface.co/datasets/TypicaAI/MedicalNER_Fr}
203
  }