--- license: other language: - pt pretty_name: ViTucano-Pretrain task_categories: - image-to-text - text-generation size_categories: - 100K" }, { "from": "gpt", "value": "Selecione móveis de luxo 3 - colchão de espuma de memória de gel de polegada" } ], "blip_caption": "Selecione móveis de luxo 3 - colchão de espuma de memória de gel de polegada", "url": "http://ec1.ostkcdn.com/images/products/8111140/P15459545.jpg" } ``` ### Data Splits Available splits are `train`. To use this dataset, you will need to download both the `data-pretraining.json` and `images.zip` files available in this folder: ```bash wget https://huggingface.co./datasets/TucanoBR/ViTucano-Pretrain/resolve/main/data-pretraining.json wget https://huggingface.co./datasets/TucanoBR/ViTucano-Pretrain/resolve/main/images.zip ``` You can also do this via the `huggingface_hub` library: ```python from huggingface_hub import snapshot_download snapshot_download(repo_id="ViTucano-Pretrain", repo_type="dataset") ``` Unzip the images in a way that you get this folder structure (e.g., `unzip images.zip -d "path/to/train"`): ```bash ├── train ├── 00000 ├── 00001 ├── 00002 └── etc ... ``` Done! The data is ready to train your projector. ## Dataset Creation ### Curation Rationale This dataset is a translation of the original [liuhaotian/LLaVA-Pretrain](https://huggingface.co./datasets/liuhaotian/LLaVA-Pretrain) obtained via Google's translation API. ### Source Data #### Who are the source language producers? All text samples translated from English to Portuguese. ### Annotations #### Annotation process Read this [dataset card](https://huggingface.co./datasets/liuhaotian/LLaVA-Pretrain) for more information. #### Who are the annotators? Read this [dataset card](https://huggingface.co./datasets/liuhaotian/LLaVA-Pretrain) for more information. ### Considerations for Using the Data **Warning:** This dataset may contain NSFW (Not Safe For Work) content, including explicit images and text captions with offensive/sensitive language. ### Other Known Limitations This dataset has has been translated using translation engines, potentially resulting in corrupted samples. While useful for quickly converting text between languages, translation engines often struggle with accurately preserving the syntax, semantics, and context of certain languages. ## Additional Information ### Dataset Curators [Nicholas Kluge Corrêa](mailto:kluge@uni-bonn.de). ### Licensing Information Users of this dataset must comply with license of [CC-3M](https://github.com/google-research-datasets/conceptual-captions/blob/master/LICENSE) and [BLIP](https://github.com/salesforce/BLIP/blob/main/LICENSE.txt) (if you use their synthetic caption). Creative Commons Attribution 4.0 International; and it should abide by the [policy of OpenAI](https://openai.com/policies/terms-of-use). ### Citation Information #### ViTucano ```bibtex @misc{correa20204vitucano, author={Corr{\^e}a, Nicholas Kluge and Sen, Aniket and Falk, Sophia and Fatimah, Shiza}, title={{ViTucano: A Portuguese Vision Assitant}}, year=2024, howpublished = {\url{https://huggingface.co./TucanoBR}}, } ``` #### Tucano ```bibtex @misc{correa2025vitucano, author={Corr{\^e}a, Nicholas Kluge and Sen, Aniket and Falk, Sophia and Fatimah, Shiza}, title={{ViTucano: A Portuguese Vision Assitant}}, year=2025, howpublished={\url{https://huggingface.co./TucanoBR/ViTucano-2b8-v1}}, doi={10.57967/hf/4530}, publisher={{Hugging Face}} } ``` #### TinyLLaVA Factory ```bibtex @article{jia2024tinyllava, title={TinyLLaVA Factory: A Modularized Codebase for Small-scale Large Multimodal Models}, author={Jia, Junlong and Hu, Ying and Weng, Xi and Shi, Yiming and Li, Miao and Zhang, Xingjian and Zhou, Baichuan and Liu, Ziyu and Luo, Jie and Huang, Lei and Wu, Ji}, journal={arXiv preprint arXiv:2405.11788}, year={2024} } ``` #### LLaVA ```bibtex @misc{liu2023llava, title={Visual Instruction Tuning}, author={Liu, Haotian and Li, Chunyuan and Wu, Qingyang and Lee, Yong Jae}, publisher={NeurIPS}, year={2023}, } ``` ### Aknowlegments We gratefully acknowledge the granted access to the [Marvin cluster](https://www.hpc.uni-bonn.de/en/systems/marvin) hosted by [University of Bonn](https://www.uni-bonn.de/en) along with the support provided by its High Performance Computing \& Analytics Lab. ### Contributions If you want to contribute, contact me at [kluge@uni-bonn.de](mailto:kluge@uni-bonn.de)!