anti-spoofing_replay / anti-spoofing_replay.py
vkashko's picture
feat: upload script docs: readme
36d0ada
import datasets
import pandas as pd
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {anti-spoofing_replay},
author = {TrainingDataPro},
year = {2023}
}
"""
_DESCRIPTION = """\
The dataset consists of 40,000 videos and selfies with unique people. 15,000
attack replays from 4,000 unique devices. 10,000 attacks with A4 printouts and
10,000 attacks with cut-out printouts.
"""
_NAME = 'anti-spoofing_replay'
_HOMEPAGE = f"https://huggingface.co./datasets/TrainingDataPro/{_NAME}"
_LICENSE = "cc-by-nc-nd-4.0"
_DATA = f"https://huggingface.co./datasets/TrainingDataPro/{_NAME}/resolve/main/data/"
class AntiSpoofingReplay(datasets.GeneratorBasedBuilder):
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features({
'live_video_id': datasets.Value('string'),
'phone': datasets.Value('string'),
'video_file': datasets.Value('string'),
'phone_video_playback': datasets.Value('string'),
'worker_id': datasets.Value('string')
}),
supervised_keys=None,
homepage=_HOMEPAGE,
citation=_CITATION,
license=_LICENSE)
def _split_generators(self, dl_manager):
videos = dl_manager.download(f"{_DATA}videos.tar.gz")
annotations = dl_manager.download(f"{_DATA}{_NAME}.csv")
videos = dl_manager.iter_archive(videos)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN,
gen_kwargs={
"videos": videos,
'annotations': annotations
}),
]
def _generate_examples(self, videos, annotations):
annotations_df = pd.read_csv(annotations, sep=';')
for idx, (video_path, video) in enumerate(videos):
file_name = '/'.join(video_path.split('/')[-2:])
yield idx, {
'live_video_id':
annotations_df.loc[annotations_df['link'] == file_name]
['live_video_id'].values[0],
'phone':
annotations_df.loc[annotations_df['link'] == file_name]
['phone'].values[0],
'video_file':
video_path,
'phone_video_playback':
annotations_df.loc[annotations_df['link'] == file_name]
['phone_video_playback'].values[0],
'worker_id':
annotations_df.loc[annotations_df['link'] == file_name]
['worker_id'].values[0]
}