File size: 5,654 Bytes
8a615a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fce8da0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a615a0
 
 
391ad8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a615a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
---
annotations_creators:
- no-annotation
language:
- fr
language_creators:
- found
license:
- cc-by-4.0
multilinguality:
- monolingual
pretty_name: French Legal Cases Dataset
size_categories:
- n>1M
source_datasets:
- la-mousse/INCA-17-01-2025
- la-mousse/JADE-17-01-2025
- la-mousse/CASS-17-01-2025
- la-mousse/CAPP-17-01-2025
task_categories:
- text-generation
- text-classification
task_ids:
- language-modeling
- entity-linking-classification
- fact-checking
- intent-classification
- multi-label-classification
- multi-input-text-classification
- natural-language-inference
- semantic-similarity-classification
- sentiment-classification
- topic-classification 
- sentiment-analysis
- named-entity-recognition
- parsing
- extractive-qa
- open-domain-qa
- closed-domain-qa
- news-articles-summarization
- news-articles-headline-generation
- dialogue-modeling 
- dialogue-generation
- abstractive-qa
- closed-domain-qa
- keyword-spotting
- semantic-segmentation
- tabular-multi-class-classification
- tabular-multi-label-classification
- document-retrieval
- document-question-answering
paperswithcode_id: french-legal-cases
dataset_info:
  features:
  - name: id
    dtype: string
  - name: url
    dtype: string
  - name: case_number
    dtype: string
  - name: contenu
    dtype: string
  - name: sommaire
    dtype: string
  - name: sommaire_bis
    dtype: string
  - name: metadata
    dtype: string
  - name: dataset_source
    dtype: string
  - name: previous_text
    dtype: string
  - name: current_text
    dtype: string
  - name: next_text
    dtype: string
  - name: triplet_index
    dtype: int64
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
---

# Dataset Card for French Legal Cases Dataset

## Dataset Description

- **Homepage:** [https://huggingface.co./datasets/la-mousse/combined-fe-caselaw](https://huggingface.co./datasets/la-mousse/combined-fe-caselaw)
- **Repository:** [https://huggingface.co./datasets/la-mousse/combined-fe-caselaw](https://huggingface.co./datasets/la-mousse/combined-fe-caselaw)
- **Paper:** N/A
- **Point of Contact:** [Your Contact Information]

### Dataset Summary

This dataset combines French legal cases from multiple sources (INCA, JADE, CASS, CAPP) into a unified format with overlapping text triplets. It includes decisions from various French courts, processed to facilitate natural language processing tasks.

### Supported Tasks and Leaderboards

- **Tasks:**
  - Text Generation
  - Legal Document Analysis
  - Text Classification
  - Language Modeling

### Languages

The dataset is monolingual (French).

## Dataset Structure

### Data Instances

Each instance contains:
- Document identifiers (id, url, case_number)
- Original text content (contenu)
- Summaries (sommaire, sommaire_bis)
- Metadata (JSON formatted string)
- Text triplets (previous_text, current_text, next_text)
- Position tracking (triplet_index, window_index)

Example:
```python
{
    'id': 'CASS12345',
    'url': 'https://...',
    'case_number': '12-34567',
    'contenu': 'Full text...',
    'sommaire': 'Summary...',
    'sommaire_bis': 'Additional summary...',
    'metadata': '{"date_decision": "2023-01-01", ...}',
    'dataset_source': 'CASS',
    'previous_text': 'Previous chunk...',
    'current_text': 'Current chunk...',
    'next_text': 'Next chunk...',
    'triplet_index': 0,
    'window_index': 0
}
```

### Data Fields

- `id`: Unique identifier
- `url`: Source URL
- `case_number`: Case reference number
- `contenu`: Full text content
- `sommaire`: Primary summary
- `sommaire_bis`: Secondary summary
- `metadata`: JSON string containing additional metadata
- `dataset_source`: Origin dataset (INCA/JADE/CASS/CAPP)
- `previous_text`: Previous text chunk
- `current_text`: Current text chunk
- `next_text`: Next text chunk
- `triplet_index`: Position in sequence of triplets
- `window_index`: Window number for long texts

### Data Splits

- Training split only

## Dataset Creation

### Curation Rationale

This dataset was created to provide a standardized format for French legal texts, with overlapping text chunks suitable for various NLP tasks.

### Source Data

#### Initial Data Collection and Normalization

- INCA: Court of Cassation decisions
- JADE: Administrative court decisions
- CASS: Court of Cassation decisions
- CAPP: Court of Appeal decisions

### Preprocessing

- Text chunking with 230-token chunks and 30-token overlap
- Sliding window approach for long texts
- Metadata preservation and standardization
- Token count verification
- JSON formatting for metadata

### Quality Control

- Token length verification
- Chunk coherence checks
- Metadata validation
- Error logging and handling

## Considerations for Using the Data

### Social Impact of Dataset

This dataset aims to improve access to and understanding of French legal decisions, potentially benefiting legal research and analysis.

### Discussion of Biases

The dataset may reflect inherent biases in the French legal system and case selection/publication processes.

### Other Known Limitations

- Limited to published decisions
- Varying detail levels across sources
- Potential OCR errors in source texts

## Additional Information

### Dataset Curators

La-Mousse

### Licensing Information

CC-BY-4.0

### Citation Information

```
@misc{french-legal-cases-2024,
    title={French Legal Cases Dataset},
    author={[Your Name]},
    year={2024},
    publisher={HuggingFace},
    url={https://huggingface.co./datasets/la-mousse/combined-fr-caselaw}
}
```

### Contributions

Thanks to [@huggingface](https://github.com/huggingface) for the dataset hosting and infrastructure.