from pprint import pprint import polars as pl from huggingface_hub import hf_hub_url, list_repo_files from tqdm import tqdm file_names = pl.Series(list_repo_files("allenai/c4", repo_type="dataset")) # Take all splits of the realnewslike subset (513 files) news_files = file_names.filter( file_names.str.starts_with("realnewslike/") & file_names.str.ends_with(".json.gz"), ).str.strip_prefix("realnewslike/") c4n_features = {"url": pl.String, "text": pl.String} aggregator = pl.DataFrame(schema=c4n_features) domain_capture = r"https?://([^/?]+)" # subpage_capture = r"https?://[^/]+/([^/?]+)" subpage_capture = r"https?://[^/]+(\/[^/?]+\/)" # Include pre/suffix slashes url_match = r"^(news\.bbc\.co\.uk|www\.bbc\.co\.uk|www\.bbc\.com)$" news_subpages = ["news"] # Blogs are the 2nd largest category but still far smaller regions = [ "berkshire", "birmingham", "blackcountry", "bradford", "bristol", "cambridgeshire", "chelsea", "cornwall", "coventry", "cumbria", "derby", "devon", "dorset", "england", "essex", "gloucestershire", "guernsey", "hampshire", "herefordandworcester", "humber", "isleofman", "jersey", "kent", "lancashire", "leeds", "leicester", "lincolnshire", "liverpool", "london", "manchester", "norfolk", "northamptonshire", "northernireland", "nottingham", "oxford", "readingandleeds", "scotland", "shropshire", "somerset", "southampton", "southyorkshire", "stoke", "suffolk", "tees", "tyne", "wales", "wiltshire", ] allowed_subpages = pl.DataFrame({"path": map("/{}/".format, news_subpages + regions)}) path_col = pl.col("url").str.extract(subpage_capture).alias("path") for filename in tqdm(news_files): json_url = hf_hub_url( repo_id="allenai/c4", filename=filename, subfolder="realnewslike", repo_type="dataset", ) print(f"Processing {json_url}") df = pl.read_ndjson(json_url, schema=c4n_features).filter( pl.col("url").str.extract(domain_capture).str.contains(url_match), ~pl.col("url").str.contains(r"https?://[^/]+\/\?"), # Path is a ? ) news_df = ( df.with_columns(path_col) .sort("path") .join(allowed_subpages, on="path") .drop("path") ) aggregator = pl.concat([aggregator, news_df]) print(aggregator) with pl.Config() as cfg: cfg.set_tbl_rows(-1) aggregator.with_columns(path_col)["path"].value_counts().sort( "count", descending=True ).with_row_index().pipe(print)