from functools import partial from pathlib import Path import polars as pl from datasets import Dataset, get_dataset_config_names, load_dataset_builder from datasets.exceptions import DatasetNotFoundError from huggingface_hub import login from tqdm import tqdm from bbcfw.core.caching import make_cache_path, mktemp_cache_dir from bbcfw.core.configs import map_file_configs from bbcfw.core.filters import domain_capture, domain_match, subpage_capture # 1) Log into HuggingFace, name the datasets we'll ingest and produce login(new_session=False) # Will prompt for your token or use cached token dataset_id = "HuggingFaceFW/fineweb" dataset_id_slug = dataset_id.replace("/", "_") username = "permutans" result_dataset_name = "fineweb-bbc-news" result_dataset_id = f"{username}/{result_dataset_name}" # 2) Make a directory to cache our transformations of the entire dataset (all subsets) cache_dir = mktemp_cache_dir(id_path=dataset_id) dataset_cache_path = partial(make_cache_path, cache_dir=cache_dir) parquet_cache_names = cache_dir / f"{dataset_id_slug}_filenames.parquet" if parquet_cache_names.exists(): source_files = pl.read_parquet(parquet_cache_names) else: source_files = map_file_configs(dataset_id=dataset_id) source_files.write_parquet(parquet_cache_names) fwnews_features = {feat_name: pl.String for feat_name in "url text".split()} aggregator = pl.DataFrame(schema=fwnews_features) domain_col = pl.col("url").str.extract(domain_capture) path_col = pl.col("url").str.extract(subpage_capture) config_names = source_files["config_name"].unique().sort() def ds_subset_exists(dataset_id: str, subset_name: str) -> bool: """Check that the dataset exists, and if so whether the config name is in it.""" try: configs = get_dataset_config_names(dataset_id) except DatasetNotFoundError: print(f"The dataset {dataset_id} was not found.") return False else: return subset_name in list(configs) def process_all_subsets(reverse: bool=False): for subset_name in tqdm(config_names[::-1] if reverse else config_names): try: # Skip any existing subsets entirely if ds_subset_exists(dataset_id=result_dataset_id, subset_name=subset_name): print(f"Skipping {subset_name} as it exists") continue else: print(f"The subset {subset_name} doesn't exist, creating it") hf_urls = source_files.filter(pl.col("config_name") == subset_name).select( url=f"hf://datasets/{dataset_id}/" + pl.col("name") ) pq_caches = [] def process_subset_chunk(source_url: str) -> Path: parquet_cache_chunk = dataset_cache_path(source_url) if parquet_cache_chunk.exists(): try: news_df = pl.read_parquet(parquet_cache_chunk) except: print(f"Failed to read {parquet_cache_chunk}") raise else: print(f"\nProcessing {source_url}") # Drop query parameters if ? in URL, drop any non-BBC News domain URLs news_df = ( pl.scan_parquet(source_url, parallel="prefiltered") .select("url", "text", "language") .filter(pl.col("language") == "en") .select(pl.col("url").str.extract(r"([^?]+)"), "text") .filter( domain_col.str.contains(domain_match), ~pl.col("url").str.contains( r"https?://[^/]+\/\?" ), # Path is not `/?` ) .filter( domain_col.str.contains("news").or_(path_col == "/news/") ) ) news_df.sink_parquet(parquet_cache_chunk) return parquet_cache_chunk for url in tqdm(list(hf_urls["url"])): parquet_cache_chunk = process_subset_chunk(url) pq_caches.append(parquet_cache_chunk) # Reload once all parts completed and upload aggregator = pl.read_parquet(pq_caches) news_data = aggregator.to_dict(as_series=False) news_dataset = Dataset.from_dict(news_data) news_dataset.push_to_hub( result_dataset_id, config_name=subset_name, private=False, ) except KeyboardInterrupt: print("\nGracefully shutting down - current subset was not completed") return # Exit cleanly except Exception as e: print(f"\nError processing subset {subset_name}: {str(e)}") continue # Skip to next subset if __name__ == "__main__": try: process_all_subsets() except KeyboardInterrupt: print("\nShutting down...")