# coding=utf-8 """British Library EThos dataset""" import csv from datetime import datetime import datasets from datasets.features import Features _CITATION = """\ @misc{british library_genre, title={UK Doctoral Thesis Metadata from EThOS}, url={UK Doctoral Thesis Metadata from EThOS}, author={{British Library} and {Rosie, Heather}}, year={2021}} """ _DESCRIPTION = """\ The data in this collection comprises the bibliographic metadata for all UK doctoral theses listed in EThOS, the UK's national thesis service. We estimate the data covers around 98% of all PhDs ever awarded by UK Higher Education institutions, dating back to 1787. Thesis metadata from every PhD-awarding university in the UK is included. """ _HOMEPAGE = "https://doi.org/10.23636/rcm4-zk44" _LICENSE = "CC BY 4.0 Attribution" _URL = "https://bl.iro.bl.uk/downloads/05b31c0e-da22-4b9f-a17c-35880aa111f4?locale=en" features = Features( { "Title": datasets.Value("string"), "DOI": datasets.Value("string"), "Author": datasets.Value("string"), "Author ISNI": datasets.Value("string"), "ORCID": datasets.Value("string"), "Institution": datasets.Value("string"), "Institution ISNI": datasets.Value("string"), "Date": datasets.Value("timestamp[s]"), "Qualification": datasets.Value("string"), "Abstract": datasets.Value("string"), "Subject Discipline": datasets.ClassLabel( names=[ "Physical Sciences", "Biological Sciences", "Engineering & Technology", "Mathematics & Statistics", "Agriculture & Veterinary Sciences", "Medicine & Health", "Computer Science", "Philosophy, Psychology & Religious Studies", "Business & Administrative Studies", "Education", "Language & Literature", "Social, Economic & Political Studies", "Architecture, Building & Planning", "History & Archaeology", "Creative Arts & Design", "Law", "Sport & Recreation", "Librarianship & Information Science", "Music", " ", ] ), "Supervisor(s)": datasets.Value("string"), "Funder(s)": datasets.Value("string"), "EThOS URL": datasets.Value("string"), "IR URL": datasets.Value("string"), } ) class Ethos(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("1.1.0") BUILDER_CONFIGS = [ datasets.BuilderConfig( name="all", version=VERSION, description="", ), datasets.BuilderConfig( "skip_empty_abstracts", version=VERSION, description="EThOs skipping entires with no abstract", ), ] DEFAULT_CONFIG_NAME = "all" def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=features, supervised_keys=None, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" data_file = dl_manager.download(_URL) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": data_file, }, ), ] def _generate_examples(self, filepath): """Yields examples as (key, example) tuples.""" if self.config.name == "skip_empty_abstracts": skip = True else: skip = False with open(filepath, encoding="latin-1") as f: reader = csv.DictReader(f) id_ = 0 for row in reader: abstract = row["Abstract"] if skip and len(abstract) < 2: continue try: date = datetime.strptime(row["Date"], "%Y") except ValueError: date = None id_ += 1 yield id_, { "Title": row["Title"], "DOI": row["DOI"], "Author": row["Author"], "Author ISNI": row["Author ISNI"], "ORCID": row["ORCID"], "Institution": row["Institution"], "Institution ISNI": row["Institution ISNI"], "Date": date, "Qualification": row["Qualification"], "Abstract": abstract, "Subject Discipline": row["Subject Discipline"], "Supervisor(s)": row["Supervisor(s)"], "Funder(s)": row["Funder(s)"], "EThOS URL": row["EThOS URL"], "IR URL": row["IR URL"], }