|
|
|
"""British Library EThos dataset""" |
|
|
|
import csv |
|
from datetime import datetime |
|
import datasets |
|
from datasets.features import Features |
|
from datasets.tasks import LanguageModeling |
|
|
|
_CITATION = """\ |
|
@misc{british library_genre, |
|
title={UK Doctoral Thesis Metadata from EThOS}, |
|
url={UK Doctoral Thesis Metadata from EThOS}, |
|
author={{British Library} and {Rosie, Heather}}, |
|
year={2021}} |
|
""" |
|
|
|
|
|
_DESCRIPTION = """\ |
|
The data in this collection comprises the bibliographic metadata for all UK doctoral theses listed in EThOS, the UK's national thesis service. |
|
We estimate the data covers around 98% of all PhDs ever awarded by UK Higher Education institutions, dating back to 1787. |
|
Thesis metadata from every PhD-awarding university in the UK is included. |
|
""" |
|
|
|
|
|
_HOMEPAGE = "https://doi.org/10.23636/ybpt-nh33" |
|
_LICENSE = "CC BY 4.0 Attribution" |
|
|
|
|
|
_URL = "https://bl.iro.bl.uk/downloads/3043a513-72af-4fad-864d-1da5ee1e8ed1?locale=en" |
|
|
|
|
|
features = Features( |
|
{ |
|
"Title": datasets.Value("string"), |
|
"DOI": datasets.Value("string"), |
|
"Author": datasets.Value("string"), |
|
"Author ISNI": datasets.Value("string"), |
|
"ORCID": datasets.Value("string"), |
|
"Institution": datasets.Value("string"), |
|
"Institution ISNI": datasets.Value("string"), |
|
"Date": datasets.Value("timestamp[s]"), |
|
"Qualification": datasets.Value("string"), |
|
"Abstract": datasets.Value("string"), |
|
"Subject Discipline": datasets.ClassLabel( |
|
names=[ |
|
"Physical Sciences", |
|
"Biological Sciences", |
|
"Engineering & Technology", |
|
"Mathematics & Statistics", |
|
"Agriculture & Veterinary Sciences", |
|
"Medicine & Health", |
|
"Computer Science", |
|
"Philosophy, Psychology & Religious Studies", |
|
"Business & Administrative Studies", |
|
"Education", |
|
"Language & Literature", |
|
"Social, Economic & Political Studies", |
|
"Architecture, Building & Planning", |
|
"History & Archaeology", |
|
"Creative Arts & Design", |
|
"Law", |
|
"Sport & Recreation", |
|
"Librarianship & Information Science", |
|
"Music", |
|
" ", |
|
] |
|
), |
|
"Supervisor(s)": datasets.Value("string"), |
|
"Funder(s)": datasets.Value("string"), |
|
"EThOS URL": datasets.Value("string"), |
|
"IR URL": datasets.Value("string"), |
|
} |
|
) |
|
|
|
|
|
class Ethos(datasets.GeneratorBasedBuilder): |
|
|
|
VERSION = datasets.Version("1.1.0") |
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
name="all", |
|
version=VERSION, |
|
description="", |
|
), |
|
datasets.BuilderConfig( |
|
"skip_empty_abstracts", |
|
version=VERSION, |
|
description="EThOs skipping entires with no abstract", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "all" |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
task_templates=[LanguageModeling(text_column="Abstract")], |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
data_file = dl_manager.download(_URL) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={ |
|
"filepath": data_file, |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
"""Yields examples as (key, example) tuples.""" |
|
if self.config.name == "skip_empty_abstracts": |
|
skip = True |
|
else: |
|
skip = False |
|
with open(filepath, encoding="latin-1") as f: |
|
reader = csv.DictReader(f) |
|
id_ = 0 |
|
for row in reader: |
|
abstract = row["Abstract"] |
|
if skip and len(abstract) < 2: |
|
continue |
|
try: |
|
date = datetime.strptime(row["Date"], "%Y") |
|
except ValueError: |
|
date = None |
|
id_ += 1 |
|
yield id_, { |
|
"Title": row["Title"], |
|
"DOI": row["DOI"], |
|
"Author": row["Author"], |
|
"Author ISNI": row["Author ISNI"], |
|
"ORCID": row["ORCID"], |
|
"Institution": row["Institution"], |
|
"Institution ISNI": row["Institution ISNI"], |
|
"Date": date, |
|
"Qualification": row["Qualification"], |
|
"Abstract": abstract, |
|
"Subject Discipline": row["Subject Discipline"], |
|
"Supervisor(s)": row["Supervisor(s)"], |
|
"Funder(s)": row["Funder(s)"], |
|
"EThOS URL": row["EThOS URL"], |
|
"IR URL": row["IR URL"], |
|
} |
|
|