File size: 5,220 Bytes
4f8d358
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c51b050
4f8d358
 
 
c51b050
4f8d358
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
# coding=utf-8
"""British Library EThos dataset"""

import csv
from datetime import datetime
import datasets
from datasets.features import Features
from datasets.tasks import LanguageModeling

_CITATION = """\ 
@misc{british library_genre,
title={UK Doctoral Thesis Metadata from EThOS},
url={UK Doctoral Thesis Metadata from EThOS},
author={{British Library} and  {Rosie, Heather}},
year={2021}}
"""


_DESCRIPTION = """\
The data in this collection comprises the bibliographic metadata for all UK doctoral theses listed in EThOS, the UK's national thesis service.
We estimate the data covers around 98% of all PhDs ever awarded by UK Higher Education institutions, dating back to 1787.
Thesis metadata from every PhD-awarding university in the UK is included.
"""


_HOMEPAGE = "https://doi.org/10.23636/rcm4-zk44"
_LICENSE = "CC BY 4.0 Attribution"


_URL = "https://bl.iro.bl.uk/downloads/05b31c0e-da22-4b9f-a17c-35880aa111f4?locale=en"


features = Features(
    {
        "Title": datasets.Value("string"),
        "DOI": datasets.Value("string"),
        "Author": datasets.Value("string"),
        "Author ISNI": datasets.Value("string"),
        "ORCID": datasets.Value("string"),
        "Institution": datasets.Value("string"),
        "Institution ISNI": datasets.Value("string"),
        "Date": datasets.Value("timestamp[s]"),
        "Qualification": datasets.Value("string"),
        "Abstract": datasets.Value("string"),
        "Subject Discipline": datasets.ClassLabel(
            names=[
                "Physical Sciences",
                "Biological Sciences",
                "Engineering & Technology",
                "Mathematics & Statistics",
                "Agriculture & Veterinary Sciences",
                "Medicine & Health",
                "Computer Science",
                "Philosophy, Psychology & Religious Studies",
                "Business & Administrative Studies",
                "Education",
                "Language & Literature",
                "Social, Economic & Political Studies",
                "Architecture, Building & Planning",
                "History & Archaeology",
                "Creative Arts & Design",
                "Law",
                "Sport & Recreation",
                "Librarianship & Information Science",
                "Music",
                " ",
            ]
        ),
        "Supervisor(s)": datasets.Value("string"),
        "Funder(s)": datasets.Value("string"),
        "EThOS URL": datasets.Value("string"),
        "IR URL": datasets.Value("string"),
    }
)


class Ethos(datasets.GeneratorBasedBuilder):

    VERSION = datasets.Version("1.1.0")
    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name="all",
            version=VERSION,
            description="",
        ),
        datasets.BuilderConfig(
            "skip_empty_abstracts",
            version=VERSION,
            description="EThOs skipping entires with no abstract",
        ),
    ]

    DEFAULT_CONFIG_NAME = "all"

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
            task_templates=[LanguageModeling(text_column="Abstract")],
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        data_file = dl_manager.download(_URL)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": data_file,
                },
            ),
        ]

    def _generate_examples(self, filepath):
        """Yields examples as (key, example) tuples."""
        if self.config.name == "skip_empty_abstracts":
            skip = True
        else:
            skip = False
        with open(filepath, encoding="latin-1") as f:
            reader = csv.DictReader(f)
            id_ = 0
            for row in reader:
                abstract = row["Abstract"]
                if skip and len(abstract) < 2:
                    continue
                try:
                    date = datetime.strptime(row["Date"], "%Y")
                except ValueError:
                    date = None
                id_ += 1
                yield id_, {
                    "Title": row["Title"],
                    "DOI": row["DOI"],
                    "Author": row["Author"],
                    "Author ISNI": row["Author ISNI"],
                    "ORCID": row["ORCID"],
                    "Institution": row["Institution"],
                    "Institution ISNI": row["Institution ISNI"],
                    "Date": date,
                    "Qualification": row["Qualification"],
                    "Abstract": abstract,
                    "Subject Discipline": row["Subject Discipline"],
                    "Supervisor(s)": row["Supervisor(s)"],
                    "Funder(s)": row["Funder(s)"],
                    "EThOS URL": row["EThOS URL"],
                    "IR URL": row["IR URL"],
                }