# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import datasets import json _DESCRIPTION = """\ LongBench is a comprehensive benchmark for multilingual and multi-task purposes, with the goal to fully measure and evaluate the ability of pre-trained language models to understand long text. This dataset consists of twenty different tasks, covering key long-text application scenarios such as multi-document QA, single-document QA, summarization, few-shot learning, synthetic tasks, and code completion. """ _HOMEPAGE = "https://github.com/THUDM/LongBench" _URL = r"https://huggingface.co./datasets/THUDM/LongBench/resolve/main/data.zip" task_list = [ "multifieldqa_en", "lcc", "passage_retrieval_zh", "qasper", "nq", "passage_retrieval_en", "gov_report", "triviaqa", "qmsum", "trec", "2wikimqa", "dureader", "lsht", "passage_count", "repobench-p", "hotpotqa", "narrativeqa", "vcsum", "musique", "multifieldqa_zh" ] class LongBenchConfig(datasets.BuilderConfig): def __init__(self, **kwargs): super().__init__(version=datasets.Version("1.0.0"), **kwargs) class LongBench(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [ LongBenchConfig( name=task_name, ) for task_name in task_list ] def _info(self): features = datasets.Features( { "input": datasets.Value("string"), "context": datasets.Value("string"), "answers": [datasets.Value("string")], "length": datasets.Value("int32"), "dataset": datasets.Value("string"), "language": datasets.Value("string"), "all_classes": [datasets.Value("string")], "_id": datasets.Value("string"), } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, ) def _split_generators(self, dl_manager): data_dir = dl_manager.download_and_extract(_URL) task_name = self.config.name return [ datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "filepath": os.path.join( data_dir, "data", f"{task_name}.jsonl" ), }, ) ] def _generate_examples(self, filepath): with open(filepath, encoding="utf-8") as f: for idx, line in enumerate(f): key = f"{self.config.name}-{idx}" item = json.loads(line) yield key, { "input": item["input"], "context": item["context"], "answers": item["answers"], "length": item["length"], "dataset": item["dataset"], "language": item["language"], "_id": item["_id"], "all_classes": item["all_classes"], }