Starscream-11813 commited on
Commit
8bc793a
·
verified ·
1 Parent(s): 6716f1e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +77 -3
README.md CHANGED
@@ -1,3 +1,77 @@
1
- ---
2
- license: cc-by-nc-sa-4.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-sa-4.0
3
+ task_categories:
4
+ - text-classification
5
+ - zero-shot-classification
6
+ language:
7
+ - bn
8
+ tags:
9
+ - Sentiment Analysis
10
+ - Book Reviews
11
+ - Product Reviews
12
+ - Bangla
13
+ - Bengali
14
+ - Dataset
15
+ pretty_name: BanglaBook
16
+ size_categories:
17
+ - 100K<n<1M
18
+ ---
19
+ # BᴀɴɢʟᴀBᴏᴏᴋ: A Large-scale Bangla Dataset for Sentiment Analysis from Book Reviews
20
+ This repository contains the code, data, and models of the paper titled "BᴀɴɢʟᴀBᴏᴏᴋ: A Large-scale Bangla Dataset for Sentiment Analysis from Book Reviews" published in the ***Findings of the Association for Computational Linguistics: ACL 2023***.
21
+
22
+ [![arXiv](https://img.shields.io/badge/arXiv-2305.06595-b31b1b.svg?logo=arxiv)](https://arxiv.org/abs/2305.06595)
23
+ [![anthology](https://img.shields.io/badge/ACL%20Anthology-2023.findings--acl.80-EE161F.svg)](https://aclanthology.org/2023.findings-acl.80/)
24
+ [![GoogleScholar](https://img.shields.io/badge/Google%20Scholar-4285F4?style=flat&logo=Google+Scholar&logoColor=white&color=gray&labelColor=4285F4)](https://tinyurl.com/gscholarbanglabook)
25
+ [![ResearchGate](https://img.shields.io/badge/ResearchGate-00CCBB?style=flat&logo=ResearchGate&logoColor=white&color=gray&labelColor=00CCBB)](https://www.researchgate.net/publication/370688086_BanglaBook_A_Large-scale_Bangla_Dataset_for_Sentiment_Analysis_from_Book_Reviews)
26
+
27
+ [![PDF](https://img.shields.io/badge/Paper%20PDF-EF3939?style=flat&logo=adobeacrobatreader&logoColor=white&color=gray&labelColor=ec1c24)](https://aclanthology.org/2023.findings-acl.80.pdf)
28
+ [![Slides](https://img.shields.io/badge/Slides%20PDF-EF3939?style=flat&logo=Microsoft+PowerPoint&logoColor=white&color=gray&labelColor=B7472A)](https://drive.google.com/file/d/1-UkYs_Rx11S7qKOfR-6rnO2VDp3W78vQ/view?usp=sharing)
29
+ [![Video](https://img.shields.io/badge/Video%20Presentation-4285F4?style=flat&logo=&logoColor=white&color=gray&labelColor=B197FC)](https://aclanthology.org/2023.findings-acl.80.mp4)
30
+
31
+ **License:** Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International
32
+
33
+ [![license](https://arxiv.org/icons/licenses/by-nc-sa-4.0.png)](http://creativecommons.org/licenses/by-nc-sa/4.0/)
34
+
35
+ ## Data Format
36
+ Each row consists of a book review sample. The table below describes what each column signifies.
37
+
38
+ Column Title | Description
39
+ ------------ | -------------
40
+ `id` | The unique identification number of the sample
41
+ `Book_Name` | The title of the book that has been evaluated by the review
42
+ `Writer_Name` | The name of the book's author
43
+ `Category` | The genre to which the book belongs
44
+ `Rating` | A numerical value \\(r\\) such that \\(1\leq r \leq 5\\)<br>A score reflecting the reviewer's subjective assessment of the book's quality
45
+ `Review` | The review text written by the reviewer
46
+ `Site` | The name of the online bookshop
47
+ `sentiment` | The conveyed sentiment and class label of the review<br>For a review sample \\(i\\) with rating \\(r_i\\), the sentiment label \\(S_i\\) is,<br>
48
+ $$
49
+ S_i =\begin{cases}
50
+ \text{Negative}, & \text{if } r_i \leq 2\\
51
+ \text{Neutral}, & \text{if } r_i = 3\\
52
+ \text{Positive}, & \text{if }r_i \geq 4
53
+ \end{cases}
54
+ $$
55
+ `label` | The numerical representation of the sentiment label<br>For a review sample \\(i\\) with sentiment label \\(S_i\\), the numerical label is,<br>
56
+ $$label_i = \begin{cases} 0, &\text{if } S_i = \text{Negative} \\ 1, &\text{if } S_i = \text{Neutral} \\ 2, &\text{if } S_i = \text{Positive} \\ \end{cases}$$
57
+
58
+ ## Citation
59
+ If you find this work useful, please cite our paper:
60
+ ```bib
61
+ @inproceedings{kabir-etal-2023-banglabook,
62
+ title = "{B}angla{B}ook: A Large-scale {B}angla Dataset for Sentiment Analysis from Book Reviews",
63
+ author = "Kabir, Mohsinul and
64
+ Bin Mahfuz, Obayed and
65
+ Raiyan, Syed Rifat and
66
+ Mahmud, Hasan and
67
+ Hasan, Md Kamrul",
68
+ booktitle = "Findings of the Association for Computational Linguistics: ACL 2023",
69
+ month = jul,
70
+ year = "2023",
71
+ address = "Toronto, Canada",
72
+ publisher = "Association for Computational Linguistics",
73
+ url = "https://aclanthology.org/2023.findings-acl.80",
74
+ pages = "1237--1247",
75
+ abstract = "The analysis of consumer sentiment, as expressed through reviews, can provide a wealth of insight regarding the quality of a product. While the study of sentiment analysis has been widely explored in many popular languages, relatively less attention has been given to the Bangla language, mostly due to a lack of relevant data and cross-domain adaptability. To address this limitation, we present BanglaBook, a large-scale dataset of Bangla book reviews consisting of 158,065 samples classified into three broad categories: positive, negative, and neutral. We provide a detailed statistical analysis of the dataset and employ a range of machine learning models to establish baselines including SVM, LSTM, and Bangla-BERT. Our findings demonstrate a substantial performance advantage of pre-trained models over models that rely on manually crafted features, emphasizing the necessity for additional training resources in this domain. Additionally, we conduct an in-depth error analysis by examining sentiment unigrams, which may provide insight into common classification errors in under-resourced languages like Bangla. Our codes and data are publicly available at https://github.com/mohsinulkabir14/BanglaBook.",
76
+ }
77
+ ```