ShixuanAn commited on
Commit
d92f616
1 Parent(s): 61c29ef

Upload RDD_2020.py

Browse files
Files changed (1) hide show
  1. RDD_2020.py +153 -0
RDD_2020.py ADDED
@@ -0,0 +1,153 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # TODO: Address all TODOs and remove all explanatory comments
2
+ """TODO: Add a description here."""
3
+
4
+ import csv
5
+ import json
6
+ import os
7
+ from typing import List
8
+ import datasets
9
+ import logging
10
+ import xml.etree.ElementTree as ET
11
+ import os
12
+
13
+ # TODO: Add BibTeX citation
14
+ # Find for instance the citation on arxiv or on the dataset repo/website
15
+ _CITATION = """\
16
+ @InProceedings{huggingface:dataset,
17
+ title = {A great new dataset},
18
+ author={Shixuan An
19
+ },
20
+ year={2024}
21
+ }
22
+ """
23
+
24
+ # TODO: Add description of the dataset here
25
+ # You can copy an official description
26
+ _DESCRIPTION = """\
27
+ This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
28
+ """
29
+
30
+ # TODO: Add a link to an official homepage for the dataset here
31
+ _HOMEPAGE = ""
32
+
33
+ # TODO: Add the licence for the dataset here if you can find it
34
+ _LICENSE = ""
35
+
36
+ # TODO: Add link to the official dataset URLs here
37
+ # The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
38
+ # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
39
+ _URLS = {
40
+ "dataset": "https://prod-dcd-datasets-cache-zipfiles.s3.eu-west-1.amazonaws.com/5ty2wb6gvg-1.zip"
41
+ }
42
+
43
+
44
+ # TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
45
+ class RDD2020_Dataset(datasets.GeneratorBasedBuilder):
46
+ """TODO: Short description of my dataset."""
47
+
48
+ _URLS = _URLS
49
+ VERSION = datasets.Version("1.1.0")
50
+
51
+ def _info(self):
52
+ return datasets.DatasetInfo(
53
+ description=_DESCRIPTION,
54
+ features=datasets.Features({
55
+ "image_id": datasets.Value("string"),
56
+ "country": datasets.Value("string"),
57
+ "type": datasets.Value("string"),
58
+ "image_resolution": datasets.Features({
59
+ "width": datasets.Value("int32"),
60
+ "height": datasets.Value("int32"),
61
+ "depth": datasets.Value("int32"),
62
+ }),
63
+ "image_path": datasets.Value("string"),
64
+ "pics_array": datasets.Array3D(shape=(None, None, 3), dtype="uint8"),
65
+ "crack_type": datasets.Sequence(datasets.Value("string")),
66
+ "crack_coordinates": datasets.Sequence(datasets.Features({
67
+ "x_min": datasets.Value("int32"),
68
+ "x_max": datasets.Value("int32"),
69
+ "y_min": datasets.Value("int32"),
70
+ "y_max": datasets.Value("int32"),
71
+ })),
72
+ }),
73
+ homepage='https://data.mendeley.com/datasets/5ty2wb6gvg/1',
74
+ citation=_CITATION,
75
+ )
76
+
77
+ def _split_generators(self, dl_manager):
78
+ """This method downloads/extracts the data and defines the splits."""
79
+ data_dir = dl_manager.download_and_extract(_URLS["dataset"])
80
+
81
+ return [
82
+ datasets.SplitGenerator(
83
+ name=datasets.Split.TRAIN,
84
+ gen_kwargs={
85
+ "images_dir": os.path.join(data_dir, "train"),
86
+ "annotations_dir": os.path.join(data_dir, "train", "annotations"),
87
+ "split": "train",
88
+ },
89
+ ),
90
+ datasets.SplitGenerator(
91
+ name=datasets.Split.TEST,
92
+ gen_kwargs={
93
+ "images_dir": os.path.join(data_dir, "test1"),
94
+ "annotations_dir": os.path.join(data_dir, "test1", "annotations"),
95
+ "split": "test1",
96
+ },
97
+ ),
98
+ datasets.SplitGenerator(
99
+ name=datasets.Split.TEST,
100
+ gen_kwargs={
101
+ "images_dir": os.path.join(data_dir, "test2"),
102
+ "annotations_dir": os.path.join(data_dir, "test2", "annotations"),
103
+ "split": "test2",
104
+ },
105
+ ),
106
+ ]
107
+
108
+ def _generate_examples(self, images_dir, annotations_dir, split):
109
+ """Yields examples as (key, example) tuples."""
110
+ for image_file in os.listdir(images_dir):
111
+ if not image_file.endswith('.jpg'):
112
+ continue
113
+ image_id = image_file.split('.')[0]
114
+ annotation_file = image_id + '.xml'
115
+ annotation_path = os.path.join(annotations_dir, annotation_file)
116
+
117
+ if not os.path.exists(annotation_path):
118
+ continue
119
+
120
+ tree = ET.parse(annotation_path)
121
+ root = tree.getroot()
122
+
123
+ country = split.capitalize()
124
+ image_path = os.path.join(images_dir, image_file)
125
+ crack_type = []
126
+ crack_coordinates = []
127
+
128
+ for obj in root.findall('object'):
129
+ crack_type.append(obj.find('name').text)
130
+ bndbox = obj.find('bndbox')
131
+ coordinates = {
132
+ "x_min": int(bndbox.find('xmin').text),
133
+ "x_max": int(bndbox.find('xmax').text),
134
+ "y_min": int(bndbox.find('ymin').text),
135
+ "y_max": int(bndbox.find('ymax').text),
136
+ }
137
+ crack_coordinates.append(coordinates)
138
+
139
+ # Assuming images are of uniform size, you might want to adjust this or extract from image directly
140
+ image_resolution = {"width": 600, "height": 600, "depth": 3} if country != "India" else {"width": 720,
141
+ "height": 720,
142
+ "depth": 3}
143
+ yield image_id, {
144
+ "image_id": image_id,
145
+ "country": country,
146
+ "type": split,
147
+ "image_resolution": image_resolution,
148
+ "image_path": image_path,
149
+ "crack_type": crack_type,
150
+ "crack_coordinates": crack_coordinates,
151
+ }
152
+
153
+