RDD_2020 / RDD_2020.py
ShixuanAn's picture
Update RDD_2020.py
8d3515f verified
raw
history blame
6.86 kB
# TODO: Address all TODOs and remove all explanatory comments
"""TODO: Add a description here."""
import csv
import json
import os
from typing import List
import datasets
import logging
import xml.etree.ElementTree as ET
import os
# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {A great new dataset},
author={Shixuan An
},
year={2024}
}
"""
# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
"""
# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = ""
# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""
# TODO: Add link to the official dataset URLs here
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URLS = {
"dataset": "https://prod-dcd-datasets-cache-zipfiles.s3.eu-west-1.amazonaws.com/5ty2wb6gvg-1.zip"
}
# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
class RDD2020_Dataset(datasets.GeneratorBasedBuilder):
"""TODO: Short description of my dataset."""
_URLS = _URLS
VERSION = datasets.Version("1.1.0")
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features({
"image_id": datasets.Value("string"),
"country": datasets.Value("string"),
"type": datasets.Value("string"),
"image_resolution": datasets.Features({
"width": datasets.Value("int32"),
"height": datasets.Value("int32"),
"depth": datasets.Value("int32"),
}),
"image_path": datasets.Value("string"),
#"pics_array": datasets.Array3D(shape=(None, None, 3), dtype="uint8"),
"crack_type": datasets.Sequence(datasets.Value("string")),
"crack_coordinates": datasets.Sequence(datasets.Features({
"x_min": datasets.Value("int32"),
"x_max": datasets.Value("int32"),
"y_min": datasets.Value("int32"),
"y_max": datasets.Value("int32"),
})),
}),
homepage='https://data.mendeley.com/datasets/5ty2wb6gvg/1',
citation=_CITATION,
)
def _split_generators(self, dl_manager):
# The direct links to the zipped files on Hugging Face
urls_to_download = {
"train": "https://huggingface.co./datasets/ShixuanAn/RDD2020/blob/main/train.zip",
"test1": "https://huggingface.co./datasets/ShixuanAn/RDD2020/blob/main/test1.zip",
"test2": "https://huggingface.co./datasets/ShixuanAn/RDD2020/blob/main/test2.zip",
}
# Download and extract the dataset using the dl_manager
downloaded_files = {
key: dl_manager.download_and_extract(url) for key, url in urls_to_download.items()
}
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"images_dir": os.path.join(downloaded_files["train"], "images"),
"annotations_dir": os.path.join(downloaded_files["train"], "annotations", "xmls"),
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"images_dir": os.path.join(downloaded_files["test1"], "images"),
"annotations_dir": None, # No annotations for test1
"split": "test1",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"images_dir": os.path.join(downloaded_files["test2"], "images"),
"annotations_dir": None, # No annotations for test2
"split": "test2",
},
),
]
def _generate_examples(self, images_dir, annotations_dir, split):
# Loop over each country directory in the images_dir
for country_dir in os.listdir(images_dir):
country_images_dir = os.path.join(images_dir, country_dir)
country_annotations_dir = os.path.join(annotations_dir, country_dir, "xmls") if annotations_dir else None
# Now loop over each image in the country's image directory
for image_file in os.listdir(country_images_dir):
if not image_file.endswith('.jpg'):
continue
image_id = image_file.split('.')[0]
annotation_file = image_id + '.xml'
annotation_path = os.path.join(country_annotations_dir, annotation_file) if country_annotations_dir else None
if annotation_path and not os.path.exists(annotation_path):
continue
# Parse the XML file for annotations if it exists
crack_type = []
crack_coordinates = []
if annotation_path:
tree = ET.parse(annotation_path)
root = tree.getroot()
for obj in root.findall('object'):
crack_type.append(obj.find('name').text)
bndbox = obj.find('bndbox')
coordinates = {
"x_min": int(bndbox.find('xmin').text),
"x_max": int(bndbox.find('xmax').text),
"y_min": int(bndbox.find('ymin').text),
"y_max": int(bndbox.find('ymax').text),
}
crack_coordinates.append(coordinates)
# Assuming images are of uniform size, you might want to adjust this or extract from image directly
image_resolution = {"width": 600, "height": 600, "depth": 3} if country_dir != "India" else {"width": 720, "height": 720, "depth": 3}
# Yield the example as a key, value pair
yield image_id, {
"image_id": image_id,
"country": country_dir,
"type": split,
"image_resolution": image_resolution,
"image_path": os.path.join(country_images_dir, image_file),
"crack_type": crack_type,
"crack_coordinates": crack_coordinates,
}