# -*- coding: utf-8 -*- """Sarcasm Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/15_wDQ9RJXwyxbomu2F1k0pK9H7XZ1cuT """ import geopandas import matplotlib.pyplot as plt import seaborn as sns from shapely.geometry import Point import pandas as pd import geopandas as gpd from datasets import ( GeneratorBasedBuilder, Version, DownloadManager, SplitGenerator, Split, Features, Value, BuilderConfig, DatasetInfo ) import matplotlib.pyplot as plt import seaborn as sns import csv import json from shapely.geometry import Point # URL definitions _URLS = { "csv_file": "https://drive.google.com/uc?export=download&id=1WcPqVZasDy1nmGcildLS-uw_-04I9Max", } class Sarcasm(GeneratorBasedBuilder): VERSION = Version("1.0.0") def _info(self): return DatasetInfo( description="This dataset combines information from sarcasm", features=Features({ "comments": Value("string"), "contains_slash_s": Value("int64"), }), supervised_keys=None, homepage="https://github.com/AuraMa111?tab=repositories", citation="Citation for the combined dataset", ) def _split_generators(self, dl_manager): downloaded_files = dl_manager.download_and_extract(_URLS) data_file_path = downloaded_files["csv_file"] num_examples = pd.read_csv(data_file_path).shape[0] train_size = int(0.6 * num_examples) val_size = int(0.2 * num_examples) test_size = num_examples - train_size - val_size return [ SplitGenerator( name=Split.TRAIN, gen_kwargs={"data_file_path": data_file_path, "split": Split.TRAIN, "size": train_size} ), SplitGenerator( name=Split.VALIDATION, gen_kwargs={"data_file_path": data_file_path, "split": Split.VALIDATION, "size": val_size} ), SplitGenerator( name=Split.TEST, gen_kwargs={"data_file_path": data_file_path, "split": Split.TEST, "size": test_size} ), ] def _generate_examples(self, data_file_path, split, size): data = pd.read_csv(data_file_path) if split == Split.TRAIN: subset_data = data[:size] elif split == Split.VALIDATION: subset_data = data[size:size*2] elif split == Split.TEST: subset_data = data[size*2:] for index, row in subset_data.iterrows(): example = { "comments": row["comments"], "contains_slash_s": row["contains_slash_s"] } yield index, example # Instantiate your dataset class sarcasm = Sarcasm() # Build the datasets sarcasm.download_and_prepare() # Access the datasets for training, validation, and testing dataset_train = sarcasm.as_dataset(split='train') dataset_validation = sarcasm.as_dataset(split='validation') dataset_test = sarcasm.as_dataset(split='test')