CluelessNovice commited on
Commit
6972977
·
verified ·
1 Parent(s): b440957

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +36 -36
README.md CHANGED
@@ -1,36 +1,36 @@
1
- ---
2
- license: mit
3
- ---
4
- # Description
5
- Structure Similarity Prediction predicts the (aligned) Local Distance Difference Test (LDDT) of the structures given an unaligned pair of proteins. Target values are computed after alignment with TM-align for all pairs of 1000 randomly sampled single-chain proteins.
6
-
7
- # Splits
8
-
9
- **Structure type:** PDB
10
-
11
- The dataset is from [**ProteinShake Building datasets and benchmarks for deep learning on protein structures**](https://academic.oup.com/bioinformatics/article/33/21/3387/3931857). We use the splits based on 70% structure similarity, with the number of training, validation and test set shown below:
12
-
13
- - Train: 300699
14
- - Valid: 4559
15
- - Test: 4850
16
-
17
- # Data format
18
-
19
- We organize all data in LMDB format. The architecture of the databse is like:
20
-
21
- **length:** The number of samples
22
-
23
- **0:**
24
-
25
- - **name_1:** The PDB ID of the protein 1
26
- - **name_2:** The PDB ID of the protein 2
27
- - **chain_1:** The chain ID of the protein 1
28
- - **chain_2:** The chain ID of the protein 2
29
- - **seq_1:** The structure-aware sequence 1
30
- - **seq_2:** The structure-aware sequence 2
31
- - **label:** Similarity value of the pair of proteins
32
-
33
- **1:**
34
-
35
- **···**
36
-
 
1
+ ---
2
+ license: mit
3
+ ---
4
+ # Description
5
+ Structure Similarity Prediction predicts the (aligned) Local Distance Difference Test (LDDT) of the structures given an unaligned pair of proteins. Target values are computed after alignment with TM-align for all pairs of 1000 randomly sampled single-chain proteins.
6
+
7
+ # Splits
8
+
9
+ **Structure type:** PDB
10
+
11
+ The dataset is from [**ProteinShake Building datasets and benchmarks for deep learning on protein structures**](https://papers.nips.cc/paper_files/paper/2023/file/b6167294ed3d6fc61e11e1592ce5cb77-Paper-Datasets_and_Benchmarks.pdf). We use the splits based on 70% structure similarity, with the number of training, validation and test set shown below:
12
+
13
+ - Train: 300699
14
+ - Valid: 4559
15
+ - Test: 4850
16
+
17
+ # Data format
18
+
19
+ We organize all data in LMDB format. The architecture of the databse is like:
20
+
21
+ **length:** The number of samples
22
+
23
+ **0:**
24
+
25
+ - **name_1:** The PDB ID of the protein 1
26
+ - **name_2:** The PDB ID of the protein 2
27
+ - **chain_1:** The chain ID of the protein 1
28
+ - **chain_2:** The chain ID of the protein 2
29
+ - **seq_1:** The structure-aware sequence 1
30
+ - **seq_2:** The structure-aware sequence 2
31
+ - **label:** Similarity value of the pair of proteins
32
+
33
+ **1:**
34
+
35
+ **···**
36
+