Upload 7 files
Browse files- .gitattributes +3 -0
- README.md +36 -0
- test/data.mdb +3 -0
- test/lock.mdb +0 -0
- train/data.mdb +3 -0
- train/lock.mdb +0 -0
- valid/data.mdb +3 -0
- valid/lock.mdb +0 -0
.gitattributes
CHANGED
@@ -53,3 +53,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
53 |
*.jpg filter=lfs diff=lfs merge=lfs -text
|
54 |
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
55 |
*.webp filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
53 |
*.jpg filter=lfs diff=lfs merge=lfs -text
|
54 |
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
55 |
*.webp filter=lfs diff=lfs merge=lfs -text
|
56 |
+
test/data.mdb filter=lfs diff=lfs merge=lfs -text
|
57 |
+
train/data.mdb filter=lfs diff=lfs merge=lfs -text
|
58 |
+
valid/data.mdb filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,3 +1,39 @@
|
|
1 |
---
|
2 |
license: mit
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
---
|
4 |
+
# Description
|
5 |
+
Binary Localization prediction is a binary classification task where each input protein *x* is mapped to a label *y* ∈ {0, 1}, corresponding to either "membrane-bound" or "soluble" .
|
6 |
+
|
7 |
+
The digital label means:
|
8 |
+
|
9 |
+
0: membrane-bound
|
10 |
+
|
11 |
+
1: soluble
|
12 |
+
|
13 |
+
# Splits
|
14 |
+
|
15 |
+
**Structure type:** AF2
|
16 |
+
|
17 |
+
The dataset is from [**DeepLoc: prediction of protein subcellular localization using deep learning**](https://academic.oup.com/bioinformatics/article/33/21/3387/3931857). We employ all proteins (proteins that lack AF2 structures are removed), and split them based on 70% structure similarity (see [ProteinShake](https://github.com/BorgwardtLab/proteinshake/tree/main)), with the number of training, validation and test set shown below:
|
18 |
+
|
19 |
+
- Train: 6707
|
20 |
+
- Valid: 698
|
21 |
+
- Test: 807
|
22 |
+
|
23 |
+
# Data format
|
24 |
+
|
25 |
+
We organize all data in LMDB format. The architecture of the databse is like:
|
26 |
+
|
27 |
+
**length:** The number of samples
|
28 |
+
|
29 |
+
**0:**
|
30 |
+
|
31 |
+
- **name:** The UniProt ID of the protein
|
32 |
+
|
33 |
+
- **seq:** The structure-aware sequence
|
34 |
+
- **plddt**: pLDDT values at all positions
|
35 |
+
- **label:** classification label of the sequence
|
36 |
+
|
37 |
+
**1:**
|
38 |
+
|
39 |
+
**···**
|
test/data.mdb
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2d2ca796a0d89190762c34a76b74d127bc64ae3783df165bbeb4e9f5201c3728
|
3 |
+
size 5619712
|
test/lock.mdb
ADDED
Binary file (8.19 kB). View file
|
|
train/data.mdb
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:baca380594e02015f9270cea9c098b60a931f26e00bc46993e881b1a6aba46ae
|
3 |
+
size 39489536
|
train/lock.mdb
ADDED
Binary file (8.19 kB). View file
|
|
valid/data.mdb
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e07a1d79848d1e8693e2b870a4b7bcdc3eefedf72c1876a35de477e6a2d01bc8
|
3 |
+
size 5046272
|
valid/lock.mdb
ADDED
Binary file (8.19 kB). View file
|
|