|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
import pandas as pd |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
_CITATION = """\ |
|
@article{SeaEval2023, |
|
title={SeaEval for Multilingual Foundation Models: From Cross-Lingual Alignment to Cultural Reasoning}, |
|
author={Wang, Bin and Liu, Zhengyuan and Huang, Xin and Jiao, Fangkai and Ding, Yang and Aw, Ai Ti and Chen, Nancy F.}, |
|
journal={arXiv preprint arXiv:2309.04766}, |
|
year={2023}, |
|
url={https://github.com/SeaEval/SeaEval} |
|
} |
|
""" |
|
|
|
_DATASETNAME = "seaeval" |
|
|
|
_DESCRIPTION = """\ |
|
SeaEval is a benchmark toolkit for evaluating multilingual LLMs. The benchmark contains 28 datasets, |
|
covering 7 languages. It contains 2 datasets for cross-lingual consistency, each containing parallel |
|
questions for the 7 represented languages. It alsoc ontains 4 datasets for cultural reasoning |
|
(multiple choice Q&A) that are in English but focused on regions including Singapore and Philipines. |
|
|
|
This dataloader provides examples for Indonesia, Vietnamese, Malay, and Filipino. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/SeaEval/SeaEval" |
|
|
|
_LANGUAGES = {"ind": "Indonesian", "vie": "Vietnamese", "zlm": "Malay", "fil": "Filipino"} |
|
|
|
_LICENSE = Licenses.CC_BY_NC_4_0.value |
|
|
|
_LOCAL = False |
|
|
|
_URLS = { |
|
"cross_mmlu": "https://huggingface.co./datasets/SeaEval/SeaEval_datasets/raw/main/cross_mmlu.json", |
|
"cross_logiqa": "https://huggingface.co./datasets/SeaEval/SeaEval_datasets/raw/main/cross_logiqa.json", |
|
"sg_eval": "https://huggingface.co./datasets/SeaEval/SeaEval_datasets/raw/main/sg_eval.json", |
|
"ph_eval": "https://huggingface.co./datasets/SeaEval/SeaEval_datasets/raw/main/ph_eval.json", |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.COMMONSENSE_REASONING, Tasks.QUESTION_ANSWERING] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class SeaEvalDataset(datasets.GeneratorBasedBuilder): |
|
""" |
|
SeaEval is a benchmark for evaluating multilingual LLMs from https://github.com/SeaEval/SeaEval. |
|
""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
LANGUAGES_EXCHANGED = dict((v, k) for k, v in _LANGUAGES.items()) |
|
SUBSETS_CROSS_MMLU = ["cross_mmlu_" + lang for lang in _LANGUAGES.keys()] |
|
SUBSETS_CROSS_LOGIQA = ["cross_logiqa_" + lang for lang in _LANGUAGES.keys()] |
|
SUBSETS = SUBSETS_CROSS_MMLU + SUBSETS_CROSS_LOGIQA + ["sg_eval_eng", "ph_eval_eng"] |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_{subset}_source", |
|
version=datasets.Version(_SOURCE_VERSION), |
|
description=f"{_DATASETNAME}_{subset} source schema", |
|
schema="source", |
|
subset_id=f"{_DATASETNAME}_{subset}", |
|
) |
|
for subset in SUBSETS |
|
] |
|
|
|
BUILDER_CONFIGS += [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_{subset}_seacrowd_qa", |
|
version=datasets.Version(_SOURCE_VERSION), |
|
description=f"{_DATASETNAME}_{subset} SEACrowd schema", |
|
schema="seacrowd_qa", |
|
subset_id=f"{_DATASETNAME}_{subset}", |
|
) |
|
for subset in SUBSETS |
|
] |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source" and self.config.subset_id not in ["cross_logiqa", "ph_eval"]: |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"question": datasets.Value("string"), |
|
"choices": datasets.Sequence(datasets.Value("string")), |
|
"answer": datasets.Value("string"), |
|
} |
|
) |
|
elif self.config.schema == "source" and self.config.subset_id == "cross_logiqa": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"question": datasets.Value("string"), |
|
"context": datasets.Value("string"), |
|
"choices": datasets.Sequence(datasets.Value("string")), |
|
"answer": datasets.Value("string"), |
|
} |
|
) |
|
elif self.config.schema == "source" and self.config.subset_id == "ph_eval": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"question": datasets.Value("string"), |
|
"choices": datasets.Sequence(datasets.Value("string")), |
|
"answer": datasets.Value("string"), |
|
"category": datasets.Value("string"), |
|
} |
|
) |
|
elif self.config.schema == "seacrowd_qa": |
|
features = schemas.qa_features |
|
else: |
|
raise ValueError(f"Unexpected schema received! {self.config.schema}") |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
""" |
|
Returns SplitGenerators. |
|
""" |
|
|
|
data = {key: dl_manager.download_and_extract(value) for key, value in _URLS.items()} |
|
|
|
paths = {} |
|
file = self.config.subset_id.split("_") |
|
file = "_".join(file[1:3]) |
|
paths[self.config.subset_id] = data[file] |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"paths": paths, |
|
"split": "test", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, paths: Path, split: str) -> Tuple[int, Dict]: |
|
""" |
|
Yields examples as (key, example) tuples. |
|
""" |
|
|
|
language = self.config.subset_id.split("_")[3] |
|
examples = None |
|
|
|
for key, path in paths.items(): |
|
if "cross" in key: |
|
data = pd.read_json(path).rename(columns=self.LANGUAGES_EXCHANGED) |
|
data = pd.melt(data, id_vars=["id"], value_vars=_LANGUAGES.keys(), var_name="language") |
|
data_flattened = pd.json_normalize(data["value"]) |
|
data_merged = pd.merge(data, data_flattened, left_index=True, right_index=True) |
|
data_filtered = data_merged[data_merged["language"] == language].drop(columns=["value", "language"]) |
|
examples = data_filtered.to_records() |
|
elif "eval" in key: |
|
data = pd.read_json(path) |
|
examples = data.to_records() |
|
|
|
idx = 0 |
|
if self.config.schema == "source" and self.config.subset_id not in ["cross_logiqa", "ph_eval"]: |
|
for row in examples: |
|
x = { |
|
"id": row["id"], |
|
"question": row["question"], |
|
"choices": row["choices"], |
|
"answer": row["answer"], |
|
} |
|
yield idx, x |
|
idx += 1 |
|
elif self.config.schema == "source" and self.config.subset_id == "cross_logiqa": |
|
for row in examples: |
|
x = { |
|
"id": row["id"], |
|
"question": row["question"], |
|
"context": row["context"] if "context" in row else None, |
|
"choices": row["choices"], |
|
"answer": row["answer"], |
|
} |
|
yield idx, x |
|
idx += 1 |
|
elif self.config.schema == "source" and self.config.subset_id == "ph_eval": |
|
for row in examples: |
|
x = { |
|
"id": row["id"], |
|
"question": row["question"], |
|
"choices": row["choices"], |
|
"answer": row["answer"], |
|
"category": row["category"] if "category" in row else None, |
|
} |
|
yield idx, x |
|
idx += 1 |
|
elif self.config.schema == "seacrowd_qa": |
|
for row in examples: |
|
x = { |
|
"id": idx, |
|
"question_id": row["id"], |
|
"document_id": row["id"], |
|
"question": row["question"], |
|
"type": "multiple_choice", |
|
"choices": row["choices"], |
|
"context": row["context"] if "context" in row else None, |
|
"answer": [row["answer"]], |
|
"meta": {}, |
|
} |
|
yield idx, x |
|
idx += 1 |
|
else: |
|
raise ValueError(f"Invalid schema: {self.config.schema}") |
|
|