File size: 7,547 Bytes
8c7edea f2315a4 8c7edea f2315a4 8c7edea f2315a4 8c7edea f2315a4 8c7edea f2315a4 8c7edea f2315a4 8c7edea f2315a4 8c7edea f2315a4 8c7edea f2315a4 8c7edea f2315a4 8c7edea f2315a4 8c7edea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
import csv
import os
from pathlib import Path
from typing import List
import datasets
from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import (DEFAULT_SEACROWD_VIEW_NAME, Licenses,
DEFAULT_SOURCE_VIEW_NAME, Tasks)
_DATASETNAME = "jv_id_tts"
_SOURCE_VIEW_NAME = DEFAULT_SOURCE_VIEW_NAME
_UNIFIED_VIEW_NAME = DEFAULT_SEACROWD_VIEW_NAME
_LANGUAGES = ["jav"]
_LOCAL = False
_CITATION = """\
@inproceedings{sodimana18_sltu,
author={Keshan Sodimana and Pasindu {De Silva} and Supheakmungkol Sarin and Oddur Kjartansson and Martin Jansche and Knot Pipatsrisawat and Linne Ha},
title={{A Step-by-Step Process for Building TTS Voices Using Open Source Data and Frameworks for Bangla, Javanese, Khmer, Nepali, Sinhala, and Sundanese}},
year=2018,
booktitle={Proc. 6th Workshop on Spoken Language Technologies for Under-Resourced Languages (SLTU 2018)},
pages={66--70},
doi={10.21437/SLTU.2018-14}
}
"""
_DESCRIPTION = """\
This data set contains high-quality transcribed audio data for Javanese.
The data set consists of wave files, and a TSV file.
The file line_index.tsv contains a filename and the transcription of audio in the file.
Each filename is prepended with a speaker identification number.
The data set has been manually quality checked, but there might still be errors.
This dataset was collected by Google in collaboration with Gadjah Mada University in Indonesia.
"""
_HOMEPAGE = "http://openslr.org/41/"
_LICENSE = Licenses.CC_BY_SA_4_0.value
_URLs = {
_DATASETNAME: {
"female": "https://www.openslr.org/resources/41/jv_id_female.zip",
"male": "https://www.openslr.org/resources/41/jv_id_male.zip",
}
}
_SUPPORTED_TASKS = [Tasks.TEXT_TO_SPEECH]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
class JvIdTTS(datasets.GeneratorBasedBuilder):
"""jv_id_tts contains high-quality Multi-speaker TTS data for Javanese (jv-ID)."""
BUILDER_CONFIGS = [
SEACrowdConfig(
name="jv_id_tts_source",
version=datasets.Version(_SOURCE_VERSION),
description="JV_ID_TTS source schema",
schema="source",
subset_id="jv_id_tts",
),
SEACrowdConfig(
name="jv_id_tts_seacrowd_sptext",
version=datasets.Version(_SEACROWD_VERSION),
description="JV_ID_TTS Nusantara schema",
schema="seacrowd_sptext",
subset_id="jv_id_tts",
),
]
DEFAULT_CONFIG_NAME = "jv_id_tts_source"
def _info(self):
if self.config.schema == "source":
features = datasets.Features(
{
"id": datasets.Value("string"),
"speaker_id": datasets.Value("string"),
"path": datasets.Value("string"),
"audio": datasets.Audio(sampling_rate=16_000),
"text": datasets.Value("string"),
}
)
elif self.config.schema == "seacrowd_sptext":
features = schemas.speech_text_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
task_templates=[datasets.AutomaticSpeechRecognition(audio_column="audio", transcription_column="text")],
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
male_path = Path(dl_manager.download_and_extract(_URLs[_DATASETNAME]["male"]))
female_path = Path(dl_manager.download_and_extract(_URLs[_DATASETNAME]["female"]))
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"male_filepath": male_path,
"female_filepath": female_path,
},
),
]
def _generate_examples(self, male_filepath: Path, female_filepath: Path):
if self.config.schema == "source" or self.config.schema == "seacrowd_sptext":
tsv_file = os.path.join(male_filepath, "jv_id_male", "line_index.tsv")
with open(tsv_file, "r") as file:
tsv_data = csv.reader(file, delimiter="\t")
for line in tsv_data:
# for male data, the tsv contains three columns
audio_id, _, transcription_text = line[0], line[1], line[2]
speaker_id = audio_id.split("_")[1]
wav_path = os.path.join(male_filepath, "jv_id_male", "wavs", "{}.wav".format(audio_id))
if os.path.exists(wav_path):
if self.config.schema == "source":
ex = {
"id": audio_id,
"speaker_id": speaker_id,
"path": wav_path,
"audio": wav_path,
"text": transcription_text,
}
yield audio_id, ex
elif self.config.schema == "seacrowd_sptext":
ex = {
"id": audio_id,
"speaker_id": speaker_id,
"path": wav_path,
"audio": wav_path,
"text": transcription_text,
"metadata": {
"speaker_age": None,
"speaker_gender": "male",
},
}
yield audio_id, ex
tsv_file = os.path.join(female_filepath, "jv_id_female", "line_index.tsv")
with open(tsv_file, "r") as file:
tsv_data = csv.reader(file, delimiter="\t")
for line in tsv_data:
audio_id, transcription_text = line[0], line[1]
speaker_id = audio_id.split("_")[1]
wav_path = os.path.join(female_filepath, "jv_id_female", "wavs", "{}.wav".format(audio_id))
if os.path.exists(wav_path):
if self.config.schema == "source":
ex = {
"id": audio_id,
"speaker_id": speaker_id,
"path": wav_path,
"audio": wav_path,
"text": transcription_text,
}
yield audio_id, ex
elif self.config.schema == "seacrowd_sptext":
ex = {
"id": audio_id,
"speaker_id": speaker_id,
"path": wav_path,
"audio": wav_path,
"text": transcription_text,
"metadata": {
"speaker_age": None,
"speaker_gender": "female",
},
}
yield audio_id, ex
else:
raise ValueError(f"Invalid config: {self.config.name}")
|