holylovenia
commited on
Commit
•
857feaa
1
Parent(s):
dc4e629
Upload id_sent_emo_mobile_apps.py with huggingface_hub
Browse files- id_sent_emo_mobile_apps.py +136 -0
id_sent_emo_mobile_apps.py
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
from pathlib import Path
|
16 |
+
from typing import Dict, List, Tuple
|
17 |
+
|
18 |
+
import datasets
|
19 |
+
import pandas as pd
|
20 |
+
|
21 |
+
from seacrowd.utils import schemas
|
22 |
+
from seacrowd.utils.configs import SEACrowdConfig
|
23 |
+
from seacrowd.utils.constants import Licenses, Tasks
|
24 |
+
|
25 |
+
_CITATION = """
|
26 |
+
@article{riccosan2023,
|
27 |
+
author = {Riccosan and Saputra, Karen Etania},
|
28 |
+
title = {Multilabel multiclass sentiment and emotion dataset from indonesian mobile application review},
|
29 |
+
journal = {Data in Brief},
|
30 |
+
volume = {50},
|
31 |
+
year = {2023},
|
32 |
+
doi = {10.1016/j.dib.2023.109576},
|
33 |
+
}
|
34 |
+
"""
|
35 |
+
|
36 |
+
_LOCAL = False
|
37 |
+
_LANGUAGES = ["ind"]
|
38 |
+
_DATASETNAME = "id_sent_emo_mobile_apps"
|
39 |
+
_DESCRIPTION = """
|
40 |
+
This dataset contains manually annotated public reviews of mobile applications in Indonesia.
|
41 |
+
Each review is given a sentiment label (positive, negative, neutral) and
|
42 |
+
an emotion label (anger, sadness, fear, happiness, love, neutral).
|
43 |
+
"""
|
44 |
+
_HOMEPAGE = "https://github.com/Ricco48/Multilabel-Sentiment-and-Emotion-Dataset-from-Indonesian-" "Mobile-Application-Review/tree/CreateCodeForPaper"
|
45 |
+
_LICENSE = Licenses.CC_BY_NC_ND_4_0.value
|
46 |
+
_URL = (
|
47 |
+
"https://github.com/Ricco48/Multilabel-Sentiment-and-Emotion-Dataset-from-Indonesian-Mobile-Application-Review/raw/CreateCodeForPaper/"
|
48 |
+
"Multilabel%20Sentiment%20and%20Emotion%20Dataset%20from%20Indonesian%20Mobile%20Application%20Review/Multilabel%20Sentiment%20and%20Emotion"
|
49 |
+
"%20Dataset%20from%20Indonesian%20Mobile%20Application%20Review.csv"
|
50 |
+
)
|
51 |
+
|
52 |
+
_SUPPORTED_TASKS = [Tasks.SENTIMENT_ANALYSIS, Tasks.EMOTION_CLASSIFICATION]
|
53 |
+
_SOURCE_VERSION = "1.0.0"
|
54 |
+
_SEACROWD_VERSION = "2024.06.20"
|
55 |
+
|
56 |
+
|
57 |
+
class EmoSentIndMobile(datasets.GeneratorBasedBuilder):
|
58 |
+
"""Dataset of Indonesian mobile application reviews manually annotated for emotion and sentiment."""
|
59 |
+
|
60 |
+
SUBSETS = ["emotion", "sentiment"]
|
61 |
+
EMOTION_CLASS_LABELS = ["Sad", "Anger", "Fear", "Happy", "Love", "Neutral"]
|
62 |
+
SENTIMENT_CLASS_LABELS = ["Negative", "Positive", "Neutral"]
|
63 |
+
|
64 |
+
BUILDER_CONFIGS = [
|
65 |
+
SEACrowdConfig(
|
66 |
+
name=f"{_DATASETNAME}_source",
|
67 |
+
version=datasets.Version(_SOURCE_VERSION),
|
68 |
+
description=f"{_DATASETNAME} source schema",
|
69 |
+
schema="source",
|
70 |
+
subset_id=_DATASETNAME
|
71 |
+
)
|
72 |
+
] + [
|
73 |
+
SEACrowdConfig(
|
74 |
+
name=f"{_DATASETNAME}_{subset}_seacrowd_text",
|
75 |
+
version=datasets.Version(_SEACROWD_VERSION),
|
76 |
+
description=f"{_DATASETNAME} SEACrowd schema for {subset} subset",
|
77 |
+
schema="seacrowd_text",
|
78 |
+
subset_id=f"{_DATASETNAME}_{subset}",
|
79 |
+
)
|
80 |
+
for subset in SUBSETS
|
81 |
+
]
|
82 |
+
|
83 |
+
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"
|
84 |
+
|
85 |
+
def _info(self) -> datasets.DatasetInfo:
|
86 |
+
if self.config.schema == "source":
|
87 |
+
features = datasets.Features(
|
88 |
+
{
|
89 |
+
"content": datasets.Value("string"),
|
90 |
+
"sentiment": datasets.Value("string"),
|
91 |
+
"emotion": datasets.Value("string"),
|
92 |
+
}
|
93 |
+
)
|
94 |
+
|
95 |
+
elif self.config.schema == "seacrowd_text":
|
96 |
+
if "emotion" in self.config.subset_id:
|
97 |
+
labels = self.EMOTION_CLASS_LABELS
|
98 |
+
elif "sentiment" in self.config.subset_id:
|
99 |
+
labels = self.SENTIMENT_CLASS_LABELS
|
100 |
+
features = schemas.text_features(label_names=labels)
|
101 |
+
|
102 |
+
return datasets.DatasetInfo(
|
103 |
+
description=_DESCRIPTION,
|
104 |
+
features=features,
|
105 |
+
homepage=_HOMEPAGE,
|
106 |
+
license=_LICENSE,
|
107 |
+
citation=_CITATION,
|
108 |
+
)
|
109 |
+
|
110 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
111 |
+
"""Returns SplitGenerators."""
|
112 |
+
fp = dl_manager.download(_URL)
|
113 |
+
return [
|
114 |
+
datasets.SplitGenerator(
|
115 |
+
name=datasets.Split.TRAIN,
|
116 |
+
gen_kwargs={"filepath": fp},
|
117 |
+
),
|
118 |
+
]
|
119 |
+
|
120 |
+
def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]:
|
121 |
+
"""Yields examples as (key, example) tuples."""
|
122 |
+
df = pd.read_csv(filepath, sep="\t", index_col=None)
|
123 |
+
for index, row in df.iterrows():
|
124 |
+
if self.config.schema == "source":
|
125 |
+
example = {
|
126 |
+
"content": row["content"],
|
127 |
+
"sentiment": row["Sentiment"].title(),
|
128 |
+
"emotion": row["Emotion"].title(),
|
129 |
+
}
|
130 |
+
elif self.config.schema == "seacrowd_text":
|
131 |
+
if "emotion" in self.config.subset_id:
|
132 |
+
label = row["Emotion"]
|
133 |
+
elif "sentiment" in self.config.subset_id:
|
134 |
+
label = row["Sentiment"]
|
135 |
+
example = {"id": str(index), "text": row["content"], "label": label.title()}
|
136 |
+
yield index, example
|