holylovenia
commited on
Commit
•
d62e0af
1
Parent(s):
374bc8e
Upload id_multilabel_hs.py with huggingface_hub
Browse files- id_multilabel_hs.py +154 -0
id_multilabel_hs.py
ADDED
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
from typing import Dict, List, Tuple
|
3 |
+
|
4 |
+
import datasets
|
5 |
+
import pandas as pd
|
6 |
+
|
7 |
+
from nusacrowd.utils import schemas
|
8 |
+
from nusacrowd.utils.configs import NusantaraConfig
|
9 |
+
from nusacrowd.utils.constants import Tasks
|
10 |
+
|
11 |
+
_CITATION = """\
|
12 |
+
@inproceedings{ibrohim-budi-2019-multi,
|
13 |
+
title = "Multi-label Hate Speech and Abusive Language Detection in {I}ndonesian {T}witter",
|
14 |
+
author = "Ibrohim, Muhammad Okky and
|
15 |
+
Budi, Indra",
|
16 |
+
booktitle = "Proceedings of the Third Workshop on Abusive Language Online",
|
17 |
+
month = aug,
|
18 |
+
year = "2019",
|
19 |
+
address = "Florence, Italy",
|
20 |
+
publisher = "Association for Computational Linguistics",
|
21 |
+
url = "https://aclanthology.org/W19-3506",
|
22 |
+
doi = "10.18653/v1/W19-3506",
|
23 |
+
pages = "46--57",
|
24 |
+
}
|
25 |
+
"""
|
26 |
+
|
27 |
+
_LOCAL = False
|
28 |
+
_LANGUAGES = ["ind"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
|
29 |
+
_DATASETNAME = "id_multilabel_hs"
|
30 |
+
|
31 |
+
_DESCRIPTION = """\
|
32 |
+
The ID_MULTILABEL_HS dataset is collection of 13,169 tweets in Indonesian language,
|
33 |
+
designed for hate speech detection NLP task. This dataset is combination from previous research and newly crawled data from Twitter.
|
34 |
+
This is a multilabel dataset with label details as follows:
|
35 |
+
-HS : hate speech label;
|
36 |
+
-Abusive : abusive language label;
|
37 |
+
-HS_Individual : hate speech targeted to an individual;
|
38 |
+
-HS_Group : hate speech targeted to a group;
|
39 |
+
-HS_Religion : hate speech related to religion/creed;
|
40 |
+
-HS_Race : hate speech related to race/ethnicity;
|
41 |
+
-HS_Physical : hate speech related to physical/disability;
|
42 |
+
-HS_Gender : hate speech related to gender/sexual orientation;
|
43 |
+
-HS_Gender : hate related to other invective/slander;
|
44 |
+
-HS_Weak : weak hate speech;
|
45 |
+
-HS_Moderate : moderate hate speech;
|
46 |
+
-HS_Strong : strong hate speech.
|
47 |
+
"""
|
48 |
+
|
49 |
+
_HOMEPAGE = "https://aclanthology.org/W19-3506/"
|
50 |
+
_LICENSE = "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"
|
51 |
+
_URLS = {
|
52 |
+
_DATASETNAME: "https://raw.githubusercontent.com/okkyibrohim/id-multi-label-hate-speech-and-abusive-language-detection/master/re_dataset.csv",
|
53 |
+
}
|
54 |
+
_SUPPORTED_TASKS = [Tasks.ASPECT_BASED_SENTIMENT_ANALYSIS]
|
55 |
+
_SOURCE_VERSION = "1.0.0"
|
56 |
+
_NUSANTARA_VERSION = "1.0.0"
|
57 |
+
|
58 |
+
|
59 |
+
class IdAbusive(datasets.GeneratorBasedBuilder):
|
60 |
+
"""The ID_MULTILABEL_HS dataset is multi-label hate speech and abusive language detection in Indonesian tweets"""
|
61 |
+
|
62 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
63 |
+
NUSANTARA_VERSION = datasets.Version(_NUSANTARA_VERSION)
|
64 |
+
|
65 |
+
BUILDER_CONFIGS = [
|
66 |
+
NusantaraConfig(
|
67 |
+
name="id_multilabel_hs_source",
|
68 |
+
version=SOURCE_VERSION,
|
69 |
+
description="ID Multilabel HS source schema",
|
70 |
+
schema="source",
|
71 |
+
subset_id="id_multilabel_hs",
|
72 |
+
),
|
73 |
+
NusantaraConfig(
|
74 |
+
name="id_multilabel_hs_nusantara_text_multi",
|
75 |
+
version=NUSANTARA_VERSION,
|
76 |
+
description="ID Multilabel HS Nusantara schema",
|
77 |
+
schema="nusantara_text_multi",
|
78 |
+
subset_id="id_multilabel_hs",
|
79 |
+
),
|
80 |
+
]
|
81 |
+
|
82 |
+
DEFAULT_CONFIG_NAME = "id_multilabel_hs_source"
|
83 |
+
|
84 |
+
def _info(self) -> datasets.DatasetInfo:
|
85 |
+
if self.config.schema == "source":
|
86 |
+
features = datasets.Features({
|
87 |
+
"tweet": datasets.Value("string"),
|
88 |
+
"HS": datasets.Value("bool"),
|
89 |
+
"Abusive": datasets.Value("bool"),
|
90 |
+
"HS_Individual": datasets.Value("bool"),
|
91 |
+
"HS_Group": datasets.Value("bool"),
|
92 |
+
"HS_Religion": datasets.Value("bool"),
|
93 |
+
"HS_Race": datasets.Value("bool"),
|
94 |
+
"HS_Physical": datasets.Value("bool"),
|
95 |
+
"HS_Gender": datasets.Value("bool"),
|
96 |
+
"HS_Other": datasets.Value("bool"),
|
97 |
+
"HS_Weak": datasets.Value("bool"),
|
98 |
+
"HS_Moderate": datasets.Value("bool"),
|
99 |
+
"HS_Strong": datasets.Value("bool"),
|
100 |
+
})
|
101 |
+
elif self.config.schema == "nusantara_text_multi":
|
102 |
+
features = schemas.text_multi_features([0, 1])
|
103 |
+
|
104 |
+
return datasets.DatasetInfo(
|
105 |
+
description=_DESCRIPTION,
|
106 |
+
features=features,
|
107 |
+
homepage=_HOMEPAGE,
|
108 |
+
license=_LICENSE,
|
109 |
+
citation=_CITATION,
|
110 |
+
)
|
111 |
+
|
112 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
113 |
+
"""Returns SplitGenerators."""
|
114 |
+
# Dataset does not have predetermined split, putting all as TRAIN
|
115 |
+
urls = _URLS[_DATASETNAME]
|
116 |
+
base_dir = Path(dl_manager.download_and_extract(urls))
|
117 |
+
data_files = {"train": base_dir}
|
118 |
+
|
119 |
+
return [
|
120 |
+
datasets.SplitGenerator(
|
121 |
+
name=datasets.Split.TRAIN,
|
122 |
+
gen_kwargs={
|
123 |
+
"filepath": data_files["train"],
|
124 |
+
"split": "train",
|
125 |
+
},
|
126 |
+
),
|
127 |
+
]
|
128 |
+
|
129 |
+
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
|
130 |
+
"""Yields examples as (key, example) tuples."""
|
131 |
+
# Dataset does not have id, using row index as id
|
132 |
+
label_cols = ["HS", "Abusive", "HS_Individual", "HS_Group", "HS_Religion", "HS_Race", "HS_Physical", "HS_Gender", "HS_Other", "HS_Weak", "HS_Moderate", "HS_Strong"]
|
133 |
+
df = pd.read_csv(filepath, encoding="ISO-8859-1").reset_index()
|
134 |
+
df.columns = ["id", "tweet"] + label_cols
|
135 |
+
|
136 |
+
if self.config.schema == "source":
|
137 |
+
for row in df.itertuples():
|
138 |
+
ex = {
|
139 |
+
"tweet": row.tweet,
|
140 |
+
}
|
141 |
+
for label in label_cols:
|
142 |
+
ex[label] = getattr(row, label)
|
143 |
+
yield row.id, ex
|
144 |
+
|
145 |
+
elif self.config.schema == "nusantara_text_multi":
|
146 |
+
for row in df.itertuples():
|
147 |
+
ex = {
|
148 |
+
"id": str(row.id),
|
149 |
+
"text": row.tweet,
|
150 |
+
"labels": [label for label in row[3:]],
|
151 |
+
}
|
152 |
+
yield row.id, ex
|
153 |
+
else:
|
154 |
+
raise ValueError(f"Invalid config: {self.config.name}")
|