File size: 1,727 Bytes
19bdedc
 
 
 
 
 
82be381
 
 
 
 
19bdedc
 
 
 
 
 
 
 
 
 
bbfc8e1
19bdedc
 
 
 
 
 
 
 
 
 
 
58e48e6
19bdedc
 
 
 
 
 
 
 
 
 
 
bbfc8e1
19bdedc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
323cefc
 
19bdedc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import datasets
import csv
import os
import sys
csv.field_size_limit(sys.maxsize)

_DESCRIPTION = """Persian Daily News dataset is a collection of 2 million news articles with the headline of each news article.
This dataset contains news articles and their summaries for the last 10 years.
This dataset is provided by Rohan AI lab for research purposes.
"""

_PROJECT_URL = """"""


_CITATION = """
https://saied71.github.io/RohanAiLab/,
  author={Saied Alimoradi},
  year={2021}
}
"""

_URL = "persian_daily.zip"



class Persian_news(datasets.GeneratorBasedBuilder):

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "text": datasets.Value("string"),
                    "summary": datasets.Value("string"),
                }
            ),
            homepage=_PROJECT_URL,
            citation=_CITATION,
        )



    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        dl_dir = dl_manager.download_and_extract(_URL)
        data_dir = os.path.join(dl_dir, "persian_daily.csv")
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": data_dir,
                },),]

    def _generate_examples(self, filepath):
        """Yields examples."""
        with open(filepath, encoding="utf-8") as f:
            reader = csv.reader(f)
            for id_, row in enumerate(reader):
                if id_ == 0:
                    continue
                yield id_, {
                    "text": row[1],
                    "summary": row[0]
                }