import datasets import csv import os import sys csv.field_size_limit(sys.maxsize) _DESCRIPTION = """persian_blog is a dataset consist of 400K blog posts from various websites and has types of tones. this dataset can be used in different NLG tasks and as a show-case it's is used in training reformer-persian.""" _PROJECT_URL = """""" _CITATION = """ https://saied71.github.io/RohanAiLab/, author={Saied Alimoradi}, year={2021} } """ train = "sample_train.zip" test = "sample_test.zip" class persian_blog_V2(datasets.GeneratorBasedBuilder): def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "text": datasets.Value("string") } ), homepage=_PROJECT_URL, citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" dl_train = dl_manager.download_and_extract(train) dl_test = dl_manager.download_and_extract(test) train_dir = os.path.join(dl_train, "sample_train.csv") test_dir = os.path.join(dl_test, "sample_test.csv") return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_dir}), datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test_dir}), ] def _generate_examples(self, filepath): """Yields examples.""" with open(filepath, encoding="utf-8") as f: reader = csv.reader(f) for id_, row in enumerate(reader): if id_ == 0: continue yield id_, { "text": row[0] }