File size: 1,768 Bytes
3973f61 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
import datasets
import csv
import os
import sys
csv.field_size_limit(sys.maxsize)
_DESCRIPTION = """persian_blog is a dataset consist of 400K blog posts from various websites and has types of tones.
this dataset can be used in different NLG tasks and as a show-case it's is used in training reformer-persian."""
_PROJECT_URL = """"""
_CITATION = """
https://saied71.github.io/RohanAiLab/,
author={Saied Alimoradi},
year={2021}
}
"""
train = "sample_train.zip"
test = "sample_test.zip"
class persian_blog_V2(datasets.GeneratorBasedBuilder):
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"text": datasets.Value("string")
}
),
homepage=_PROJECT_URL,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
dl_train = dl_manager.download_and_extract(train)
dl_test = dl_manager.download_and_extract(valid)
train_dir = os.path.join(dl_train, "sample_train.zip")
test_dir = os.path.join(dl_train, "sample_test.zip")
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_dir}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test_dir}),
]
def _generate_examples(self, filepath):
"""Yields examples."""
with open(filepath, encoding="utf-8") as f:
reader = csv.reader(f)
for id_, row in enumerate(reader):
if id_ == 0:
continue
yield id_, {
"text": row[0]
}
|