task_id
stringlengths 11
13
| prompt
stringlengths 97
1.72k
| entry_point
stringlengths 1
30
| canonical_solution
stringlengths 16
483
| test
stringlengths 117
1.8k
| seed
int32 0
9
| perturbation_name
stringclasses 6
values | partial
stringlengths 265
2.05k
β |
---|---|---|---|---|---|---|---|
HumanEval/32 | import math
def poly(xs: list, x: float):
"""
Evaluates polynomial with coefficients xs at point x.
return xs[0] + xs[1] * x + xs[1] * x^2 + .... xs[n] * x^n
"""
return sum([coeff * math.pow(x, i) for i, coeff in enumerate(xs)])
def find_zero(xs: list):
""" xs are coefficients of a polynomial.
find_zero find x such that poly(x) = 0.
find_zero returns only only zero point, even if there are many.
Moreover, find_zero only takes list xs having even number of coefficients
and largest non zero coefficient as it guarantees
a solution.
>>> round(find_zero([1, 2]), 2) # f(x) = 1 + 2x
-0.5
>>> round(find_zero([-6, 11, -6, 1]), 2) # (x - 1) * (x - 2) * (x - 3) = -6 + 11x - 6x^2 + x^3
1.0
"""
begin, end = -1., 1.
while poly(xs, begin) * poly(xs, end) > 0:
begin *= 2.0
end *= 2.0
while end - begin > 1e-10:
| find_zero | center = (begin + end) / 2.0
if poly(xs, center) * poly(xs, begin) > 0:
begin = center
else:
end = center
return begin
|
METADATA = {}
def check(candidate):
import math
import random
rng = random.Random(42)
import copy
for _ in range(100):
ncoeff = 2 * rng.randint(1, 4)
coeffs = []
for _ in range(ncoeff):
coeff = rng.randint(-10, 10)
if coeff == 0:
coeff = 1
coeffs.append(coeff)
solution = candidate(copy.deepcopy(coeffs))
assert math.fabs(poly(coeffs, solution)) < 1e-4
| 9 | new_lines | import math
def poly(xs: list, x: float):
"""
Evaluates polynomial with coefficients xs at point x.
return xs[0] + xs[1] * x + xs[1] * x^2 + .... xs[n] * x^n
"""
return sum([coeff * math.pow(x, i) for i, coeff in enumerate(xs)])
def find_zero(xs: list):
""" xs are coefficients of a polynomial.
find_zero find x such that poly(x) = 0.
find_zero returns only only zero point, even if there are many.
Moreover, find_zero only takes list xs having even number of coefficients
and largest non zero coefficient as it guarantees
a solution.
>>> round(find_zero([1, 2]), 2) # f(x) = 1 + 2x
-0.5
>>> round(find_zero([-6, 11, -6, 1]), 2) # (x - 1) * (x - 2) * (x - 3) = -6 + 11x - 6x^2 + x^3
1.0
"""
begin, end = -1., 1.
while poly(xs, begin) * poly(xs, end) > 0:
begin *= 2.0
end *= 2.0
while end - begin > 1e-10:
# print('@@this is the line to split##')
center = (begin + end) / 2.0
if poly(xs, center) * poly(xs, begin) > 0:
begin = center
else:
end = center
return begin
|
HumanEval/33 |
def sort_third(l: list):
"""This function takes a list l and returns a list l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
>>> sort_third([1, 2, 3])
[1, 2, 3]
>>> sort_third([5, 6, 3, 4, 8, 9, 2])
[2, 6, 3, 4, 8, 9, 5]
"""
l = list(l)
| sort_third | l[::3] = sorted(l[::3])
return l
|
METADATA = {}
def check(candidate):
assert tuple(candidate([1, 2, 3])) == tuple(sort_third([1, 2, 3]))
assert tuple(candidate([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10])) == tuple(sort_third([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]))
assert tuple(candidate([5, 8, -12, 4, 23, 2, 3, 11, 12, -10])) == tuple(sort_third([5, 8, -12, 4, 23, 2, 3, 11, 12, -10]))
assert tuple(candidate([5, 6, 3, 4, 8, 9, 2])) == tuple([2, 6, 3, 4, 8, 9, 5])
assert tuple(candidate([5, 8, 3, 4, 6, 9, 2])) == tuple([2, 8, 3, 4, 6, 9, 5])
assert tuple(candidate([5, 6, 9, 4, 8, 3, 2])) == tuple([2, 6, 9, 4, 8, 3, 5])
assert tuple(candidate([5, 6, 3, 4, 8, 9, 2, 1])) == tuple([2, 6, 3, 4, 8, 9, 5, 1])
| 9 | new_lines |
def sort_third(l: list):
"""This function takes a list l and returns a list l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
>>> sort_third([1, 2, 3])
[1, 2, 3]
>>> sort_third([5, 6, 3, 4, 8, 9, 2])
[2, 6, 3, 4, 8, 9, 5]
"""
l = list(l)
# print('@@this is the line to split##')
l[::3] = sorted(l[::3])
return l
|
HumanEval/34 |
def unique(l: list):
"""Return sorted unique elements in a list
>>> unique([5, 3, 5, 2, 3, 3, 9, 0, 123])
[0, 2, 3, 5, 9, 123]
"""
| unique | return sorted(list(set(l)))
|
METADATA = {}
def check(candidate):
assert candidate([5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]
| 9 | new_lines | null |
HumanEval/35 |
def max_element(l: list):
"""Return maximum element in the list.
>>> max_element([1, 2, 3])
3
>>> max_element([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10])
123
"""
m = l[0]
for e in l:
| max_element | if e > m:
m = e
return m
|
METADATA = {}
def check(candidate):
assert candidate([1, 2, 3]) == 3
assert candidate([5, 3, -5, 2, -3, 3, 9, 0, 124, 1, -10]) == 124
| 9 | new_lines |
def max_element(l: list):
"""Return maximum element in the list.
>>> max_element([1, 2, 3])
3
>>> max_element([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10])
123
"""
m = l[0]
for e in l:
# print('@@this is the line to split##')
if e > m:
m = e
return m
|
HumanEval/36 |
def fizz_buzz(n: int):
"""Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
>>> fizz_buzz(50)
0
>>> fizz_buzz(78)
2
>>> fizz_buzz(79)
3
"""
ns = []
for i in range(n):
if i % 11 == 0 or i % 13 == 0:
ns.append(i)
| fizz_buzz | s = ''.join(list(map(str, ns)))
ans = 0
for c in s:
ans += (c == '7')
return ans
|
METADATA = {}
def check(candidate):
assert candidate(50) == 0
assert candidate(78) == 2
assert candidate(79) == 3
assert candidate(100) == 3
assert candidate(200) == 6
assert candidate(4000) == 192
assert candidate(10000) == 639
assert candidate(100000) == 8026
| 9 | new_lines |
def fizz_buzz(n: int):
"""Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
>>> fizz_buzz(50)
0
>>> fizz_buzz(78)
2
>>> fizz_buzz(79)
3
"""
ns = []
for i in range(n):
if i % 11 == 0 or i % 13 == 0:
ns.append(i)
# print('@@this is the line to split##')
s = ''.join(list(map(str, ns)))
ans = 0
for c in s:
ans += (c == '7')
return ans
|
HumanEval/37 |
def sort_even(l: list):
"""This function takes a list l and returns a list l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
>>> sort_even([1, 2, 3])
[1, 2, 3]
>>> sort_even([5, 6, 3, 4])
[3, 6, 5, 4]
"""
evens = l[::2]
odds = l[1::2]
evens.sort()
ans = []
| sort_even | for e, o in zip(evens, odds):
ans.extend([e, o])
if len(evens) > len(odds):
ans.append(evens[-1])
return ans
|
METADATA = {}
def check(candidate):
assert tuple(candidate([1, 2, 3])) == tuple([1, 2, 3])
assert tuple(candidate([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10])) == tuple([-10, 3, -5, 2, -3, 3, 5, 0, 9, 1, 123])
assert tuple(candidate([5, 8, -12, 4, 23, 2, 3, 11, 12, -10])) == tuple([-12, 8, 3, 4, 5, 2, 12, 11, 23, -10])
| 9 | new_lines |
def sort_even(l: list):
"""This function takes a list l and returns a list l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
>>> sort_even([1, 2, 3])
[1, 2, 3]
>>> sort_even([5, 6, 3, 4])
[3, 6, 5, 4]
"""
evens = l[::2]
odds = l[1::2]
evens.sort()
ans = []
# print('@@this is the line to split##')
for e, o in zip(evens, odds):
ans.extend([e, o])
if len(evens) > len(odds):
ans.append(evens[-1])
return ans
|
HumanEval/38 |
def encode_cyclic(s: str):
"""
returns encoded string by cycling groups of three characters.
"""
# split string to groups. Each of length 3.
groups = [s[(3 * i):min((3 * i + 3), len(s))] for i in range((len(s) + 2) // 3)]
# cycle elements in each group. Unless group has fewer elements than 3.
groups = [(group[1:] + group[0]) if len(group) == 3 else group for group in groups]
return "".join(groups)
def decode_cyclic(s: str):
"""
takes as input string encoded with encode_cyclic function. Returns decoded string.
"""
| decode_cyclic | return encode_cyclic(encode_cyclic(s))
|
METADATA = {}
def check(candidate):
from random import randint, choice
import string
letters = string.ascii_lowercase
for _ in range(100):
str = ''.join(choice(letters) for i in range(randint(10, 20)))
encoded_str = encode_cyclic(str)
assert candidate(encoded_str) == str
| 9 | new_lines | null |
HumanEval/39 |
def prime_fib(n: int):
"""
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
>>> prime_fib(1)
2
>>> prime_fib(2)
3
>>> prime_fib(3)
5
>>> prime_fib(4)
13
>>> prime_fib(5)
89
"""
import math
def is_prime(p):
if p < 2:
return False
for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):
if p % k == 0:
return False
| prime_fib | return True
f = [0, 1]
while True:
f.append(f[-1] + f[-2])
if is_prime(f[-1]):
n -= 1
if n == 0:
return f[-1]
|
METADATA = {}
def check(candidate):
assert candidate(1) == 2
assert candidate(2) == 3
assert candidate(3) == 5
assert candidate(4) == 13
assert candidate(5) == 89
assert candidate(6) == 233
assert candidate(7) == 1597
assert candidate(8) == 28657
assert candidate(9) == 514229
assert candidate(10) == 433494437
| 9 | new_lines |
def prime_fib(n: int):
"""
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
>>> prime_fib(1)
2
>>> prime_fib(2)
3
>>> prime_fib(3)
5
>>> prime_fib(4)
13
>>> prime_fib(5)
89
"""
import math
def is_prime(p):
if p < 2:
return False
for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):
if p % k == 0:
return False
# print('@@this is the line to split##')
return True
f = [0, 1]
while True:
f.append(f[-1] + f[-2])
if is_prime(f[-1]):
n -= 1
if n == 0:
return f[-1]
|
HumanEval/40 |
def triples_sum_to_zero(l: list):
"""
triples_sum_to_zero takes a list of integers as an input.
it returns True if there are three distinct elements in the list that
sum to zero, and False otherwise.
>>> triples_sum_to_zero([1, 3, 5, 0])
False
>>> triples_sum_to_zero([1, 3, -2, 1])
True
>>> triples_sum_to_zero([1, 2, 3, 7])
False
>>> triples_sum_to_zero([2, 4, -5, 3, 9, 7])
True
>>> triples_sum_to_zero([1])
False
"""
for i in range(len(l)):
for j in range(i + 1, len(l)):
for k in range(j + 1, len(l)):
| triples_sum_to_zero | if l[i] + l[j] + l[k] == 0:
return True
return False
|
METADATA = {}
def check(candidate):
assert candidate([1, 3, 5, 0]) == False
assert candidate([1, 3, 5, -1]) == False
assert candidate([1, 3, -2, 1]) == True
assert candidate([1, 2, 3, 7]) == False
assert candidate([1, 2, 5, 7]) == False
assert candidate([2, 4, -5, 3, 9, 7]) == True
assert candidate([1]) == False
assert candidate([1, 3, 5, -100]) == False
assert candidate([100, 3, 5, -100]) == False
| 9 | new_lines |
def triples_sum_to_zero(l: list):
"""
triples_sum_to_zero takes a list of integers as an input.
it returns True if there are three distinct elements in the list that
sum to zero, and False otherwise.
>>> triples_sum_to_zero([1, 3, 5, 0])
False
>>> triples_sum_to_zero([1, 3, -2, 1])
True
>>> triples_sum_to_zero([1, 2, 3, 7])
False
>>> triples_sum_to_zero([2, 4, -5, 3, 9, 7])
True
>>> triples_sum_to_zero([1])
False
"""
for i in range(len(l)):
for j in range(i + 1, len(l)):
for k in range(j + 1, len(l)):
# print('@@this is the line to split##')
if l[i] + l[j] + l[k] == 0:
return True
return False
|
HumanEval/41 |
def car_race_collision(n: int):
"""
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right; simultaneously, a different set of n cars
are driving right to left. The two sets of cars start out being very far from
each other. All cars move in the same speed. Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions.
"""
| car_race_collision | return n**2
|
METADATA = {}
def check(candidate):
assert candidate(2) == 4
assert candidate(3) == 9
assert candidate(4) == 16
assert candidate(8) == 64
assert candidate(10) == 100
| 9 | new_lines | null |
HumanEval/42 |
def incr_list(l: list):
"""Return list with elements incremented by 1.
>>> incr_list([1, 2, 3])
[2, 3, 4]
>>> incr_list([5, 3, 5, 2, 3, 3, 9, 0, 123])
[6, 4, 6, 3, 4, 4, 10, 1, 124]
"""
| incr_list | return [(e + 1) for e in l]
|
METADATA = {}
def check(candidate):
assert candidate([]) == []
assert candidate([3, 2, 1]) == [4, 3, 2]
assert candidate([5, 2, 5, 2, 3, 3, 9, 0, 123]) == [6, 3, 6, 3, 4, 4, 10, 1, 124]
| 9 | new_lines | null |
HumanEval/43 |
def pairs_sum_to_zero(l):
"""
pairs_sum_to_zero takes a list of integers as an input.
it returns True if there are two distinct elements in the list that
sum to zero, and False otherwise.
>>> pairs_sum_to_zero([1, 3, 5, 0])
False
>>> pairs_sum_to_zero([1, 3, -2, 1])
False
>>> pairs_sum_to_zero([1, 2, 3, 7])
False
>>> pairs_sum_to_zero([2, 4, -5, 3, 5, 7])
True
>>> pairs_sum_to_zero([1])
False
"""
for i, l1 in enumerate(l):
for j in range(i + 1, len(l)):
| pairs_sum_to_zero | if l1 + l[j] == 0:
return True
return False
|
METADATA = {}
def check(candidate):
assert candidate([1, 3, 5, 0]) == False
assert candidate([1, 3, -2, 1]) == False
assert candidate([1, 2, 3, 7]) == False
assert candidate([2, 4, -5, 3, 5, 7]) == True
assert candidate([1]) == False
assert candidate([-3, 9, -1, 3, 2, 30]) == True
assert candidate([-3, 9, -1, 3, 2, 31]) == True
assert candidate([-3, 9, -1, 4, 2, 30]) == False
assert candidate([-3, 9, -1, 4, 2, 31]) == False
| 9 | new_lines |
def pairs_sum_to_zero(l):
"""
pairs_sum_to_zero takes a list of integers as an input.
it returns True if there are two distinct elements in the list that
sum to zero, and False otherwise.
>>> pairs_sum_to_zero([1, 3, 5, 0])
False
>>> pairs_sum_to_zero([1, 3, -2, 1])
False
>>> pairs_sum_to_zero([1, 2, 3, 7])
False
>>> pairs_sum_to_zero([2, 4, -5, 3, 5, 7])
True
>>> pairs_sum_to_zero([1])
False
"""
for i, l1 in enumerate(l):
for j in range(i + 1, len(l)):
# print('@@this is the line to split##')
if l1 + l[j] == 0:
return True
return False
|
HumanEval/44 |
def change_base(x: int, base: int):
"""Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
>>> change_base(8, 3)
'22'
>>> change_base(8, 2)
'1000'
>>> change_base(7, 2)
'111'
"""
ret = ""
while x > 0:
| change_base | ret = str(x % base) + ret
x //= base
return ret
|
METADATA = {}
def check(candidate):
assert candidate(8, 3) == "22"
assert candidate(9, 3) == "100"
assert candidate(234, 2) == "11101010"
assert candidate(16, 2) == "10000"
assert candidate(8, 2) == "1000"
assert candidate(7, 2) == "111"
for x in range(2, 8):
assert candidate(x, x + 1) == str(x)
| 9 | new_lines |
def change_base(x: int, base: int):
"""Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
>>> change_base(8, 3)
'22'
>>> change_base(8, 2)
'1000'
>>> change_base(7, 2)
'111'
"""
ret = ""
while x > 0:
# print('@@this is the line to split##')
ret = str(x % base) + ret
x //= base
return ret
|
HumanEval/45 |
def triangle_area(a, h):
"""Given length of a side and high return area for a triangle.
>>> triangle_area(5, 3)
7.5
"""
| triangle_area | return a * h / 2.0
|
METADATA = {}
def check(candidate):
assert candidate(5, 3) == 7.5
assert candidate(2, 2) == 2.0
assert candidate(10, 8) == 40.0
| 9 | new_lines | null |
HumanEval/46 |
def fib4(n: int):
"""The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
>>> fib4(5)
4
>>> fib4(6)
8
>>> fib4(7)
14
"""
results = [0, 0, 2, 0]
if n < 4:
return results[n]
| fib4 | for _ in range(4, n + 1):
results.append(results[-1] + results[-2] + results[-3] + results[-4])
results.pop(0)
return results[-1]
|
METADATA = {}
def check(candidate):
assert candidate(5) == 4
assert candidate(8) == 28
assert candidate(10) == 104
assert candidate(12) == 386
| 9 | new_lines |
def fib4(n: int):
"""The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
>>> fib4(5)
4
>>> fib4(6)
8
>>> fib4(7)
14
"""
results = [0, 0, 2, 0]
if n < 4:
return results[n]
# print('@@this is the line to split##')
for _ in range(4, n + 1):
results.append(results[-1] + results[-2] + results[-3] + results[-4])
results.pop(0)
return results[-1]
|
HumanEval/47 |
def median(l: list):
"""Return median of elements in the list l.
>>> median([3, 1, 2, 4, 5])
3
>>> median([-10, 4, 6, 1000, 10, 20])
15.0
"""
l = sorted(l)
if len(l) % 2 == 1:
| median | return l[len(l) // 2]
else:
return (l[len(l) // 2 - 1] + l[len(l) // 2]) / 2.0
|
METADATA = {}
def check(candidate):
assert candidate([3, 1, 2, 4, 5]) == 3
assert candidate([-10, 4, 6, 1000, 10, 20]) == 8.0
assert candidate([5]) == 5
assert candidate([6, 5]) == 5.5
assert candidate([8, 1, 3, 9, 9, 2, 7]) == 7
| 9 | new_lines |
def median(l: list):
"""Return median of elements in the list l.
>>> median([3, 1, 2, 4, 5])
3
>>> median([-10, 4, 6, 1000, 10, 20])
15.0
"""
l = sorted(l)
if len(l) % 2 == 1:
# print('@@this is the line to split##')
return l[len(l) // 2]
else:
return (l[len(l) // 2 - 1] + l[len(l) // 2]) / 2.0
|
HumanEval/48 |
def is_palindrome(text: str):
"""
Checks if given string is a palindrome
>>> is_palindrome('')
True
>>> is_palindrome('aba')
True
>>> is_palindrome('aaaaa')
True
>>> is_palindrome('zbcd')
False
"""
for i in range(len(text)):
if text[i] != text[len(text) - 1 - i]:
| is_palindrome | return False
return True
|
METADATA = {}
def check(candidate):
assert candidate('') == True
assert candidate('aba') == True
assert candidate('aaaaa') == True
assert candidate('zbcd') == False
assert candidate('xywyx') == True
assert candidate('xywyz') == False
assert candidate('xywzx') == False
| 9 | new_lines |
def is_palindrome(text: str):
"""
Checks if given string is a palindrome
>>> is_palindrome('')
True
>>> is_palindrome('aba')
True
>>> is_palindrome('aaaaa')
True
>>> is_palindrome('zbcd')
False
"""
for i in range(len(text)):
if text[i] != text[len(text) - 1 - i]:
# print('@@this is the line to split##')
return False
return True
|
HumanEval/49 |
def modp(n: int, p: int):
"""Return 2^n modulo p (be aware of numerics).
>>> modp(3, 5)
3
>>> modp(1101, 101)
2
>>> modp(0, 101)
1
>>> modp(3, 11)
8
>>> modp(100, 101)
1
"""
ret = 1
for i in range(n):
| modp | ret = (2 * ret) % p
return ret
|
METADATA = {}
def check(candidate):
assert candidate(3, 5) == 3
assert candidate(1101, 101) == 2
assert candidate(0, 101) == 1
assert candidate(3, 11) == 8
assert candidate(100, 101) == 1
assert candidate(30, 5) == 4
assert candidate(31, 5) == 3
| 9 | new_lines |
def modp(n: int, p: int):
"""Return 2^n modulo p (be aware of numerics).
>>> modp(3, 5)
3
>>> modp(1101, 101)
2
>>> modp(0, 101)
1
>>> modp(3, 11)
8
>>> modp(100, 101)
1
"""
ret = 1
for i in range(n):
# print('@@this is the line to split##')
ret = (2 * ret) % p
return ret
|
HumanEval/50 |
def encode_shift(s: str):
"""
returns encoded string by shifting every character by 5 in the alphabet.
"""
return "".join([chr(((ord(ch) + 5 - ord("a")) % 26) + ord("a")) for ch in s])
def decode_shift(s: str):
"""
takes as input string encoded with encode_shift function. Returns decoded string.
"""
| decode_shift | return "".join([chr(((ord(ch) - 5 - ord("a")) % 26) + ord("a")) for ch in s])
|
METADATA = {}
def check(candidate):
from random import randint, choice
import copy
import string
letters = string.ascii_lowercase
for _ in range(100):
str = ''.join(choice(letters) for i in range(randint(10, 20)))
encoded_str = encode_shift(str)
assert candidate(copy.deepcopy(encoded_str)) == str
| 9 | new_lines | null |
HumanEval/51 |
def remove_vowels(text):
"""
remove_vowels is a function that takes string and returns string without vowels.
>>> remove_vowels('')
''
>>> remove_vowels("abcdef\nghijklm")
'bcdf\nghjklm'
>>> remove_vowels('abcdef')
'bcdf'
>>> remove_vowels('aaaaa')
''
>>> remove_vowels('aaBAA')
'B'
>>> remove_vowels('zbcd')
'zbcd'
"""
| remove_vowels | return "".join([s for s in text if s.lower() not in ["a", "e", "i", "o", "u"]])
|
METADATA = {}
def check(candidate):
assert candidate('') == ''
assert candidate("abcdef\nghijklm") == 'bcdf\nghjklm'
assert candidate('fedcba') == 'fdcb'
assert candidate('eeeee') == ''
assert candidate('acBAA') == 'cB'
assert candidate('EcBOO') == 'cB'
assert candidate('ybcd') == 'ybcd'
| 9 | new_lines | null |
HumanEval/52 |
def below_threshold(l: list, t: int):
"""Return True if all numbers in the list l are below threshold t.
>>> below_threshold([1, 2, 4, 10], 100)
True
>>> below_threshold([1, 20, 4, 10], 5)
False
"""
for e in l:
if e >= t:
| below_threshold | return False
return True
|
METADATA = {}
def check(candidate):
assert candidate([1, 2, 4, 10], 100)
assert not candidate([1, 20, 4, 10], 5)
assert candidate([1, 20, 4, 10], 21)
assert candidate([1, 20, 4, 10], 22)
assert candidate([1, 8, 4, 10], 11)
assert not candidate([1, 8, 4, 10], 10)
| 9 | new_lines |
def below_threshold(l: list, t: int):
"""Return True if all numbers in the list l are below threshold t.
>>> below_threshold([1, 2, 4, 10], 100)
True
>>> below_threshold([1, 20, 4, 10], 5)
False
"""
for e in l:
if e >= t:
# print('@@this is the line to split##')
return False
return True
|
HumanEval/53 |
def add(x: int, y: int):
"""Add two numbers x and y
>>> add(2, 3)
5
>>> add(5, 7)
12
"""
| add | return x + y
|
METADATA = {}
def check(candidate):
import random
assert candidate(0, 1) == 1
assert candidate(1, 0) == 1
assert candidate(2, 3) == 5
assert candidate(5, 7) == 12
assert candidate(7, 5) == 12
for i in range(100):
x, y = random.randint(0, 1000), random.randint(0, 1000)
assert candidate(x, y) == x + y
| 9 | new_lines | null |
HumanEval/54 |
def same_chars(s0: str, s1: str):
"""
Check if two words have the same characters.
>>> same_chars('eabcdzzzz', 'dddzzzzzzzddeddabc')
True
>>> same_chars('abcd', 'dddddddabc')
True
>>> same_chars('dddddddabc', 'abcd')
True
>>> same_chars('eabcd', 'dddddddabc')
False
>>> same_chars('abcd', 'dddddddabce')
False
>>> same_chars('eabcdzzzz', 'dddzzzzzzzddddabc')
False
"""
| same_chars | return set(s0) == set(s1)
|
METADATA = {}
def check(candidate):
assert candidate('eabcdzzzz', 'dddzzzzzzzddeddabc') == True
assert candidate('abcd', 'dddddddabc') == True
assert candidate('dddddddabc', 'abcd') == True
assert candidate('eabcd', 'dddddddabc') == False
assert candidate('abcd', 'dddddddabcf') == False
assert candidate('eabcdzzzz', 'dddzzzzzzzddddabc') == False
assert candidate('aabb', 'aaccc') == False
| 9 | new_lines | null |
HumanEval/55 |
def fib(n: int):
"""Return n-th Fibonacci number.
>>> fib(10)
55
>>> fib(1)
1
>>> fib(8)
21
"""
if n == 0:
return 0
| fib | if n == 1:
return 1
return fib(n - 1) + fib(n - 2)
|
METADATA = {}
def check(candidate):
assert candidate(10) == 55
assert candidate(1) == 1
assert candidate(8) == 21
assert candidate(11) == 89
assert candidate(12) == 144
| 9 | new_lines |
def fib(n: int):
"""Return n-th Fibonacci number.
>>> fib(10)
55
>>> fib(1)
1
>>> fib(8)
21
"""
if n == 0:
return 0
# print('@@this is the line to split##')
if n == 1:
return 1
return fib(n - 1) + fib(n - 2)
|
HumanEval/56 |
def correct_bracketing(brackets: str):
""" brackets is a string of "<" and ">".
return True if every opening bracket has a corresponding closing bracket.
>>> correct_bracketing("<")
False
>>> correct_bracketing("<>")
True
>>> correct_bracketing("<<><>>")
True
>>> correct_bracketing("><<>")
False
"""
depth = 0
for b in brackets:
if b == "<":
depth += 1
| correct_bracketing | else:
depth -= 1
if depth < 0:
return False
return depth == 0
|
METADATA = {}
def check(candidate):
assert candidate("<>")
assert candidate("<<><>>")
assert candidate("<><><<><>><>")
assert candidate("<><><<<><><>><>><<><><<>>>")
assert not candidate("<<<><>>>>")
assert not candidate("><<>")
assert not candidate("<")
assert not candidate("<<<<")
assert not candidate(">")
assert not candidate("<<>")
assert not candidate("<><><<><>><>><<>")
assert not candidate("<><><<><>><>>><>")
| 9 | new_lines |
def correct_bracketing(brackets: str):
""" brackets is a string of "<" and ">".
return True if every opening bracket has a corresponding closing bracket.
>>> correct_bracketing("<")
False
>>> correct_bracketing("<>")
True
>>> correct_bracketing("<<><>>")
True
>>> correct_bracketing("><<>")
False
"""
depth = 0
for b in brackets:
if b == "<":
depth += 1
# print('@@this is the line to split##')
else:
depth -= 1
if depth < 0:
return False
return depth == 0
|
HumanEval/57 |
def monotonic(l: list):
"""Return True is list elements are monotonically increasing or decreasing.
>>> monotonic([1, 2, 4, 20])
True
>>> monotonic([1, 20, 4, 10])
False
>>> monotonic([4, 1, 0, -10])
True
"""
if l == sorted(l) or l == sorted(l, reverse=True):
| monotonic | return True
return False
|
METADATA = {}
def check(candidate):
assert candidate([1, 2, 4, 10]) == True
assert candidate([1, 2, 4, 20]) == True
assert candidate([1, 20, 4, 10]) == False
assert candidate([4, 1, 0, -10]) == True
assert candidate([4, 1, 1, 0]) == True
assert candidate([1, 2, 3, 2, 5, 60]) == False
assert candidate([1, 2, 3, 4, 5, 60]) == True
assert candidate([9, 9, 9, 9]) == True
| 9 | new_lines |
def monotonic(l: list):
"""Return True is list elements are monotonically increasing or decreasing.
>>> monotonic([1, 2, 4, 20])
True
>>> monotonic([1, 20, 4, 10])
False
>>> monotonic([4, 1, 0, -10])
True
"""
if l == sorted(l) or l == sorted(l, reverse=True):
# print('@@this is the line to split##')
return True
return False
|
HumanEval/58 |
def common(l1: list, l2: list):
"""Return sorted unique common elements for two lists.
>>> common([1, 4, 3, 34, 653, 2, 5], [5, 7, 1, 5, 9, 653, 121])
[1, 5, 653]
>>> common([5, 3, 2, 8], [3, 2])
[2, 3]
"""
ret = set()
for e1 in l1:
for e2 in l2:
| common | if e1 == e2:
ret.add(e1)
return sorted(list(ret))
|
METADATA = {}
def check(candidate):
assert candidate([1, 4, 3, 34, 653, 2, 5], [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
assert candidate([5, 3, 2, 8], [3, 2]) == [2, 3]
assert candidate([4, 3, 2, 8], [3, 2, 4]) == [2, 3, 4]
assert candidate([4, 3, 2, 8], []) == []
| 9 | new_lines |
def common(l1: list, l2: list):
"""Return sorted unique common elements for two lists.
>>> common([1, 4, 3, 34, 653, 2, 5], [5, 7, 1, 5, 9, 653, 121])
[1, 5, 653]
>>> common([5, 3, 2, 8], [3, 2])
[2, 3]
"""
ret = set()
for e1 in l1:
for e2 in l2:
# print('@@this is the line to split##')
if e1 == e2:
ret.add(e1)
return sorted(list(ret))
|
HumanEval/59 |
def largest_prime_factor(n: int):
"""Return the largest prime factor of n. Assume n > 1 and is not a prime.
>>> largest_prime_factor(13195)
29
>>> largest_prime_factor(2048)
2
"""
def is_prime(k):
if k < 2:
return False
for i in range(2, k - 1):
if k % i == 0:
return False
| largest_prime_factor | return True
largest = 1
for j in range(2, n + 1):
if n % j == 0 and is_prime(j):
largest = max(largest, j)
return largest
|
METADATA = {}
def check(candidate):
assert candidate(15) == 5
assert candidate(27) == 3
assert candidate(63) == 7
assert candidate(330) == 11
assert candidate(13195) == 29
| 9 | new_lines |
def largest_prime_factor(n: int):
"""Return the largest prime factor of n. Assume n > 1 and is not a prime.
>>> largest_prime_factor(13195)
29
>>> largest_prime_factor(2048)
2
"""
def is_prime(k):
if k < 2:
return False
for i in range(2, k - 1):
if k % i == 0:
return False
# print('@@this is the line to split##')
return True
largest = 1
for j in range(2, n + 1):
if n % j == 0 and is_prime(j):
largest = max(largest, j)
return largest
|
HumanEval/60 |
def sum_to_n(n: int):
"""sum_to_n is a function that sums numbers from 1 to n.
>>> sum_to_n(30)
465
>>> sum_to_n(100)
5050
>>> sum_to_n(5)
15
>>> sum_to_n(10)
55
>>> sum_to_n(1)
1
"""
| sum_to_n | return sum(range(n + 1))
|
METADATA = {}
def check(candidate):
assert candidate(1) == 1
assert candidate(6) == 21
assert candidate(11) == 66
assert candidate(30) == 465
assert candidate(100) == 5050
| 9 | new_lines | null |
HumanEval/61 |
def correct_bracketing(brackets: str):
""" brackets is a string of "(" and ")".
return True if every opening bracket has a corresponding closing bracket.
>>> correct_bracketing("(")
False
>>> correct_bracketing("()")
True
>>> correct_bracketing("(()())")
True
>>> correct_bracketing(")(()")
False
"""
depth = 0
for b in brackets:
if b == "(":
depth += 1
| correct_bracketing | else:
depth -= 1
if depth < 0:
return False
return depth == 0
|
METADATA = {}
def check(candidate):
assert candidate("()")
assert candidate("(()())")
assert candidate("()()(()())()")
assert candidate("()()((()()())())(()()(()))")
assert not candidate("((()())))")
assert not candidate(")(()")
assert not candidate("(")
assert not candidate("((((")
assert not candidate(")")
assert not candidate("(()")
assert not candidate("()()(()())())(()")
assert not candidate("()()(()())()))()")
| 9 | new_lines |
def correct_bracketing(brackets: str):
""" brackets is a string of "(" and ")".
return True if every opening bracket has a corresponding closing bracket.
>>> correct_bracketing("(")
False
>>> correct_bracketing("()")
True
>>> correct_bracketing("(()())")
True
>>> correct_bracketing(")(()")
False
"""
depth = 0
for b in brackets:
if b == "(":
depth += 1
# print('@@this is the line to split##')
else:
depth -= 1
if depth < 0:
return False
return depth == 0
|
HumanEval/62 |
def derivative(xs: list):
""" xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 + ....
Return derivative of this polynomial in the same form.
>>> derivative([3, 1, 2, 4, 5])
[1, 4, 12, 20]
>>> derivative([1, 2, 3])
[2, 6]
"""
| derivative | return [(i * x) for i, x in enumerate(xs)][1:]
|
METADATA = {}
def check(candidate):
assert candidate([3, 1, 2, 4, 5]) == [1, 4, 12, 20]
assert candidate([1, 2, 3]) == [2, 6]
assert candidate([3, 2, 1]) == [2, 2]
assert candidate([3, 2, 1, 0, 4]) == [2, 2, 0, 16]
assert candidate([1]) == []
| 9 | new_lines | null |
HumanEval/63 |
def fibfib(n: int):
"""The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
>>> fibfib(1)
0
>>> fibfib(5)
4
>>> fibfib(8)
24
"""
if n == 0:
return 0
if n == 1:
| fibfib | return 0
if n == 2:
return 1
return fibfib(n - 1) + fibfib(n - 2) + fibfib(n - 3)
|
METADATA = {}
def check(candidate):
assert candidate(2) == 1
assert candidate(1) == 0
assert candidate(5) == 4
assert candidate(8) == 24
assert candidate(10) == 81
assert candidate(12) == 274
assert candidate(14) == 927
| 9 | new_lines |
def fibfib(n: int):
"""The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
>>> fibfib(1)
0
>>> fibfib(5)
4
>>> fibfib(8)
24
"""
if n == 0:
return 0
if n == 1:
# print('@@this is the line to split##')
return 0
if n == 2:
return 1
return fibfib(n - 1) + fibfib(n - 2) + fibfib(n - 3)
|
HumanEval/64 |
FIX = """
Add more test cases.
"""
def vowels_count(s):
"""Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
>>> vowels_count("abcde")
2
>>> vowels_count("ACEDY")
3
"""
vowels = "aeiouAEIOU"
n_vowels = sum(c in vowels for c in s)
| vowels_count | if s[-1] == 'y' or s[-1] == 'Y':
n_vowels += 1
return n_vowels
| def check(candidate):
# Check some simple cases
assert candidate("abcde") == 2, "Test 1"
assert candidate("Alone") == 3, "Test 2"
assert candidate("key") == 2, "Test 3"
assert candidate("bye") == 1, "Test 4"
assert candidate("keY") == 2, "Test 5"
assert candidate("bYe") == 1, "Test 6"
assert candidate("ACEDY") == 3, "Test 7"
# Check some edge cases that are easy to work out by hand.
assert True, "This prints if this assert fails 2 (also good for debugging!)"
| 9 | new_lines |
FIX = """
Add more test cases.
"""
def vowels_count(s):
"""Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
>>> vowels_count("abcde")
2
>>> vowels_count("ACEDY")
3
"""
vowels = "aeiouAEIOU"
n_vowels = sum(c in vowels for c in s)
# print('@@this is the line to split##')
if s[-1] == 'y' or s[-1] == 'Y':
n_vowels += 1
return n_vowels
|
HumanEval/65 |
def circular_shift(x, shift):
"""Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
>>> circular_shift(12, 1)
"21"
>>> circular_shift(12, 2)
"12"
"""
s = str(x)
if shift > len(s):
| circular_shift | return s[::-1]
else:
return s[len(s) - shift:] + s[:len(s) - shift]
| def check(candidate):
# Check some simple cases
assert candidate(100, 2) == "001"
assert candidate(12, 2) == "12"
assert candidate(97, 8) == "79"
assert candidate(12, 1) == "21", "This prints if this assert fails 1 (good for debugging!)"
# Check some edge cases that are easy to work out by hand.
assert candidate(11, 101) == "11", "This prints if this assert fails 2 (also good for debugging!)"
| 9 | new_lines |
def circular_shift(x, shift):
"""Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
>>> circular_shift(12, 1)
"21"
>>> circular_shift(12, 2)
"12"
"""
s = str(x)
if shift > len(s):
# print('@@this is the line to split##')
return s[::-1]
else:
return s[len(s) - shift:] + s[:len(s) - shift]
|
HumanEval/66 |
def digitSum(s):
"""Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
digitSum("") => 0
digitSum("abAB") => 131
digitSum("abcCd") => 67
digitSum("helloE") => 69
digitSum("woArBld") => 131
digitSum("aAaaaXa") => 153
"""
if s == "": return 0
| digitSum | return sum(ord(char) if char.isupper() else 0 for char in s)
| def check(candidate):
# Check some simple cases
assert True, "This prints if this assert fails 1 (good for debugging!)"
assert candidate("") == 0, "Error"
assert candidate("abAB") == 131, "Error"
assert candidate("abcCd") == 67, "Error"
assert candidate("helloE") == 69, "Error"
assert candidate("woArBld") == 131, "Error"
assert candidate("aAaaaXa") == 153, "Error"
# Check some edge cases that are easy to work out by hand.
assert True, "This prints if this assert fails 2 (also good for debugging!)"
assert candidate(" How are yOu?") == 151, "Error"
assert candidate("You arE Very Smart") == 327, "Error"
| 9 | new_lines |
def digitSum(s):
"""Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
digitSum("") => 0
digitSum("abAB") => 131
digitSum("abcCd") => 67
digitSum("helloE") => 69
digitSum("woArBld") => 131
digitSum("aAaaaXa") => 153
"""
if s == "": return 0
# print('@@this is the line to split##')
return sum(ord(char) if char.isupper() else 0 for char in s)
|
HumanEval/67 |
def fruit_distribution(s,n):
"""
In this task, you will be given a string that represents a number of apples and oranges
that are distributed in a basket of fruit this basket contains
apples, oranges, and mango fruits. Given the string that represents the total number of
the oranges and apples and an integer that represent the total number of the fruits
in the basket return the number of the mango fruits in the basket.
for examble:
fruit_distribution("5 apples and 6 oranges", 19) ->19 - 5 - 6 = 8
fruit_distribution("0 apples and 1 oranges",3) -> 3 - 0 - 1 = 2
fruit_distribution("2 apples and 3 oranges", 100) -> 100 - 2 - 3 = 95
fruit_distribution("100 apples and 1 oranges",120) -> 120 - 100 - 1 = 19
"""
lis = list()
for i in s.split(' '):
| fruit_distribution | if i.isdigit():
lis.append(int(i))
return n - sum(lis)
| def check(candidate):
# Check some simple cases
assert candidate("5 apples and 6 oranges",19) == 8
assert candidate("5 apples and 6 oranges",21) == 10
assert candidate("0 apples and 1 oranges",3) == 2
assert candidate("1 apples and 0 oranges",3) == 2
assert candidate("2 apples and 3 oranges",100) == 95
assert candidate("2 apples and 3 oranges",5) == 0
assert candidate("1 apples and 100 oranges",120) == 19
| 9 | new_lines |
def fruit_distribution(s,n):
"""
In this task, you will be given a string that represents a number of apples and oranges
that are distributed in a basket of fruit this basket contains
apples, oranges, and mango fruits. Given the string that represents the total number of
the oranges and apples and an integer that represent the total number of the fruits
in the basket return the number of the mango fruits in the basket.
for examble:
fruit_distribution("5 apples and 6 oranges", 19) ->19 - 5 - 6 = 8
fruit_distribution("0 apples and 1 oranges",3) -> 3 - 0 - 1 = 2
fruit_distribution("2 apples and 3 oranges", 100) -> 100 - 2 - 3 = 95
fruit_distribution("100 apples and 1 oranges",120) -> 120 - 100 - 1 = 19
"""
lis = list()
for i in s.split(' '):
# print('@@this is the line to split##')
if i.isdigit():
lis.append(int(i))
return n - sum(lis)
|
HumanEval/68 |
def pluck(arr):
"""
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in a list, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
Input: [4,2,3]
Output: [2, 1]
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Input: [1,2,3]
Output: [2, 1]
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Input: []
Output: []
Example 4:
Input: [5, 0, 3, 0, 4, 2]
Output: [0, 1]
Explanation: 0 is the smallest value, but there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
"""
if(len(arr) == 0): return []
evens = list(filter(lambda x: x%2 == 0, arr))
| pluck | if(evens == []): return []
return [min(evens), arr.index(min(evens))]
| def check(candidate):
# Check some simple cases
assert True, "This prints if this assert fails 1 (good for debugging!)"
assert candidate([4,2,3]) == [2, 1], "Error"
assert candidate([1,2,3]) == [2, 1], "Error"
assert candidate([]) == [], "Error"
assert candidate([5, 0, 3, 0, 4, 2]) == [0, 1], "Error"
# Check some edge cases that are easy to work out by hand.
assert True, "This prints if this assert fails 2 (also good for debugging!)"
assert candidate([1, 2, 3, 0, 5, 3]) == [0, 3], "Error"
assert candidate([5, 4, 8, 4 ,8]) == [4, 1], "Error"
assert candidate([7, 6, 7, 1]) == [6, 1], "Error"
assert candidate([7, 9, 7, 1]) == [], "Error"
| 9 | new_lines |
def pluck(arr):
"""
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in a list, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
Input: [4,2,3]
Output: [2, 1]
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Input: [1,2,3]
Output: [2, 1]
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Input: []
Output: []
Example 4:
Input: [5, 0, 3, 0, 4, 2]
Output: [0, 1]
Explanation: 0 is the smallest value, but there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
"""
if(len(arr) == 0): return []
evens = list(filter(lambda x: x%2 == 0, arr))
# print('@@this is the line to split##')
if(evens == []): return []
return [min(evens), arr.index(min(evens))]
|
HumanEval/69 |
def search(lst):
'''
You are given a non-empty list of positive integers. Return the greatest integer that is greater than
zero, and has a frequency greater than or equal to the value of the integer itself.
The frequency of an integer is the number of times it appears in the list.
If no such a value exist, return -1.
Examples:
search([4, 1, 2, 2, 3, 1]) == 2
search([1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search([5, 5, 4, 4, 4]) == -1
'''
frq = [0] * (max(lst) + 1)
for i in lst:
frq[i] += 1;
ans = -1
| search | for i in range(1, len(frq)):
if frq[i] >= i:
ans = i
return ans
| def check(candidate):
# manually generated tests
assert candidate([5, 5, 5, 5, 1]) == 1
assert candidate([4, 1, 4, 1, 4, 4]) == 4
assert candidate([3, 3]) == -1
assert candidate([8, 8, 8, 8, 8, 8, 8, 8]) == 8
assert candidate([2, 3, 3, 2, 2]) == 2
# automatically generated tests
assert candidate([2, 7, 8, 8, 4, 8, 7, 3, 9, 6, 5, 10, 4, 3, 6, 7, 1, 7, 4, 10, 8, 1]) == 1
assert candidate([3, 2, 8, 2]) == 2
assert candidate([6, 7, 1, 8, 8, 10, 5, 8, 5, 3, 10]) == 1
assert candidate([8, 8, 3, 6, 5, 6, 4]) == -1
assert candidate([6, 9, 6, 7, 1, 4, 7, 1, 8, 8, 9, 8, 10, 10, 8, 4, 10, 4, 10, 1, 2, 9, 5, 7, 9]) == 1
assert candidate([1, 9, 10, 1, 3]) == 1
assert candidate([6, 9, 7, 5, 8, 7, 5, 3, 7, 5, 10, 10, 3, 6, 10, 2, 8, 6, 5, 4, 9, 5, 3, 10]) == 5
assert candidate([1]) == 1
assert candidate([8, 8, 10, 6, 4, 3, 5, 8, 2, 4, 2, 8, 4, 6, 10, 4, 2, 1, 10, 2, 1, 1, 5]) == 4
assert candidate([2, 10, 4, 8, 2, 10, 5, 1, 2, 9, 5, 5, 6, 3, 8, 6, 4, 10]) == 2
assert candidate([1, 6, 10, 1, 6, 9, 10, 8, 6, 8, 7, 3]) == 1
assert candidate([9, 2, 4, 1, 5, 1, 5, 2, 5, 7, 7, 7, 3, 10, 1, 5, 4, 2, 8, 4, 1, 9, 10, 7, 10, 2, 8, 10, 9, 4]) == 4
assert candidate([2, 6, 4, 2, 8, 7, 5, 6, 4, 10, 4, 6, 3, 7, 8, 8, 3, 1, 4, 2, 2, 10, 7]) == 4
assert candidate([9, 8, 6, 10, 2, 6, 10, 2, 7, 8, 10, 3, 8, 2, 6, 2, 3, 1]) == 2
assert candidate([5, 5, 3, 9, 5, 6, 3, 2, 8, 5, 6, 10, 10, 6, 8, 4, 10, 7, 7, 10, 8]) == -1
assert candidate([10]) == -1
assert candidate([9, 7, 7, 2, 4, 7, 2, 10, 9, 7, 5, 7, 2]) == 2
assert candidate([5, 4, 10, 2, 1, 1, 10, 3, 6, 1, 8]) == 1
assert candidate([7, 9, 9, 9, 3, 4, 1, 5, 9, 1, 2, 1, 1, 10, 7, 5, 6, 7, 6, 7, 7, 6]) == 1
assert candidate([3, 10, 10, 9, 2]) == -1
| 9 | new_lines |
def search(lst):
'''
You are given a non-empty list of positive integers. Return the greatest integer that is greater than
zero, and has a frequency greater than or equal to the value of the integer itself.
The frequency of an integer is the number of times it appears in the list.
If no such a value exist, return -1.
Examples:
search([4, 1, 2, 2, 3, 1]) == 2
search([1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search([5, 5, 4, 4, 4]) == -1
'''
frq = [0] * (max(lst) + 1)
for i in lst:
frq[i] += 1;
ans = -1
# print('@@this is the line to split##')
for i in range(1, len(frq)):
if frq[i] >= i:
ans = i
return ans
|
HumanEval/70 |
def strange_sort_list(lst):
'''
Given list of integers, return list in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strange_sort_list([1, 2, 3, 4]) == [1, 4, 2, 3]
strange_sort_list([5, 5, 5, 5]) == [5, 5, 5, 5]
strange_sort_list([]) == []
'''
res, switch = [], True
while lst:
res.append(min(lst) if switch else max(lst))
| strange_sort_list | lst.remove(res[-1])
switch = not switch
return res
| def check(candidate):
# Check some simple cases
assert candidate([1, 2, 3, 4]) == [1, 4, 2, 3]
assert candidate([5, 6, 7, 8, 9]) == [5, 9, 6, 8, 7]
assert candidate([1, 2, 3, 4, 5]) == [1, 5, 2, 4, 3]
assert candidate([5, 6, 7, 8, 9, 1]) == [1, 9, 5, 8, 6, 7]
assert candidate([5, 5, 5, 5]) == [5, 5, 5, 5]
assert candidate([]) == []
assert candidate([1,2,3,4,5,6,7,8]) == [1, 8, 2, 7, 3, 6, 4, 5]
assert candidate([0,2,2,2,5,5,-5,-5]) == [-5, 5, -5, 5, 0, 2, 2, 2]
assert candidate([111111]) == [111111]
# Check some edge cases that are easy to work out by hand.
assert True
| 9 | new_lines |
def strange_sort_list(lst):
'''
Given list of integers, return list in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strange_sort_list([1, 2, 3, 4]) == [1, 4, 2, 3]
strange_sort_list([5, 5, 5, 5]) == [5, 5, 5, 5]
strange_sort_list([]) == []
'''
res, switch = [], True
while lst:
res.append(min(lst) if switch else max(lst))
# print('@@this is the line to split##')
lst.remove(res[-1])
switch = not switch
return res
|
HumanEval/71 |
def triangle_area(a, b, c):
'''
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle.
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater
than the third side.
Example:
triangle_area(3, 4, 5) == 6.00
triangle_area(1, 2, 10) == -1
'''
if a + b <= c or a + c <= b or b + c <= a:
return -1
s = (a + b + c)/2
| triangle_area | area = (s * (s - a) * (s - b) * (s - c)) ** 0.5
area = round(area, 2)
return area
| def check(candidate):
# Check some simple cases
assert candidate(3, 4, 5) == 6.00, "This prints if this assert fails 1 (good for debugging!)"
assert candidate(1, 2, 10) == -1
assert candidate(4, 8, 5) == 8.18
assert candidate(2, 2, 2) == 1.73
assert candidate(1, 2, 3) == -1
assert candidate(10, 5, 7) == 16.25
assert candidate(2, 6, 3) == -1
# Check some edge cases that are easy to work out by hand.
assert candidate(1, 1, 1) == 0.43, "This prints if this assert fails 2 (also good for debugging!)"
assert candidate(2, 2, 10) == -1
| 9 | new_lines |
def triangle_area(a, b, c):
'''
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle.
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater
than the third side.
Example:
triangle_area(3, 4, 5) == 6.00
triangle_area(1, 2, 10) == -1
'''
if a + b <= c or a + c <= b or b + c <= a:
return -1
s = (a + b + c)/2
# print('@@this is the line to split##')
area = (s * (s - a) * (s - b) * (s - c)) ** 0.5
area = round(area, 2)
return area
|
HumanEval/72 |
def will_it_fly(q,w):
'''
Write a function that returns True if the object q will fly, and False otherwise.
The object q will fly if it's balanced (it is a palindromic list) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
will_it_fly([1, 2], 5) β False
# 1+2 is less than the maximum possible weight, but it's unbalanced.
will_it_fly([3, 2, 3], 1) β False
# it's balanced, but 3+2+3 is more than the maximum possible weight.
will_it_fly([3, 2, 3], 9) β True
# 3+2+3 is less than the maximum possible weight, and it's balanced.
will_it_fly([3], 5) β True
# 3 is less than the maximum possible weight, and it's balanced.
'''
if sum(q) > w:
return False
i, j = 0, len(q)-1
while i<j:
| will_it_fly | if q[i] != q[j]:
return False
i+=1
j-=1
return True
| def check(candidate):
# Check some simple cases
assert candidate([3, 2, 3], 9) is True
assert candidate([1, 2], 5) is False
assert candidate([3], 5) is True
assert candidate([3, 2, 3], 1) is False
# Check some edge cases that are easy to work out by hand.
assert candidate([1, 2, 3], 6) is False
assert candidate([5], 5) is True
| 9 | new_lines |
def will_it_fly(q,w):
'''
Write a function that returns True if the object q will fly, and False otherwise.
The object q will fly if it's balanced (it is a palindromic list) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
will_it_fly([1, 2], 5) β False
# 1+2 is less than the maximum possible weight, but it's unbalanced.
will_it_fly([3, 2, 3], 1) β False
# it's balanced, but 3+2+3 is more than the maximum possible weight.
will_it_fly([3, 2, 3], 9) β True
# 3+2+3 is less than the maximum possible weight, and it's balanced.
will_it_fly([3], 5) β True
# 3 is less than the maximum possible weight, and it's balanced.
'''
if sum(q) > w:
return False
i, j = 0, len(q)-1
while i<j:
# print('@@this is the line to split##')
if q[i] != q[j]:
return False
i+=1
j-=1
return True
|
HumanEval/73 |
def smallest_change(arr):
"""
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallest_change([1,2,3,5,4,7,9,6]) == 4
smallest_change([1, 2, 3, 4, 3, 2, 2]) == 1
smallest_change([1, 2, 3, 2, 1]) == 0
"""
ans = 0
for i in range(len(arr) // 2):
| smallest_change | if arr[i] != arr[len(arr) - i - 1]:
ans += 1
return ans
| def check(candidate):
# Check some simple cases
assert candidate([1,2,3,5,4,7,9,6]) == 4
assert candidate([1, 2, 3, 4, 3, 2, 2]) == 1
assert candidate([1, 4, 2]) == 1
assert candidate([1, 4, 4, 2]) == 1
# Check some edge cases that are easy to work out by hand.
assert candidate([1, 2, 3, 2, 1]) == 0
assert candidate([3, 1, 1, 3]) == 0
assert candidate([1]) == 0
assert candidate([0, 1]) == 1
| 9 | new_lines |
def smallest_change(arr):
"""
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallest_change([1,2,3,5,4,7,9,6]) == 4
smallest_change([1, 2, 3, 4, 3, 2, 2]) == 1
smallest_change([1, 2, 3, 2, 1]) == 0
"""
ans = 0
for i in range(len(arr) // 2):
# print('@@this is the line to split##')
if arr[i] != arr[len(arr) - i - 1]:
ans += 1
return ans
|
HumanEval/74 |
def total_match(lst1, lst2):
'''
Write a function that accepts two lists of strings and returns the list that has
total number of chars in the all strings of the list less than the other list.
if the two lists have the same number of chars, return the first list.
Examples
total_match([], []) β []
total_match(['hi', 'admin'], ['hI', 'Hi']) β ['hI', 'Hi']
total_match(['hi', 'admin'], ['hi', 'hi', 'admin', 'project']) β ['hi', 'admin']
total_match(['hi', 'admin'], ['hI', 'hi', 'hi']) β ['hI', 'hi', 'hi']
total_match(['4'], ['1', '2', '3', '4', '5']) β ['4']
'''
l1 = 0
for st in lst1:
l1 += len(st)
l2 = 0
for st in lst2:
| total_match | l2 += len(st)
if l1 <= l2:
return lst1
else:
return lst2
| def check(candidate):
# Check some simple cases
assert True, "This prints if this assert fails 1 (good for debugging!)"
assert candidate([], []) == []
assert candidate(['hi', 'admin'], ['hi', 'hi']) == ['hi', 'hi']
assert candidate(['hi', 'admin'], ['hi', 'hi', 'admin', 'project']) == ['hi', 'admin']
assert candidate(['4'], ['1', '2', '3', '4', '5']) == ['4']
assert candidate(['hi', 'admin'], ['hI', 'Hi']) == ['hI', 'Hi']
assert candidate(['hi', 'admin'], ['hI', 'hi', 'hi']) == ['hI', 'hi', 'hi']
assert candidate(['hi', 'admin'], ['hI', 'hi', 'hii']) == ['hi', 'admin']
# Check some edge cases that are easy to work out by hand.
assert True, "This prints if this assert fails 2 (also good for debugging!)"
assert candidate([], ['this']) == []
assert candidate(['this'], []) == []
| 9 | new_lines |
def total_match(lst1, lst2):
'''
Write a function that accepts two lists of strings and returns the list that has
total number of chars in the all strings of the list less than the other list.
if the two lists have the same number of chars, return the first list.
Examples
total_match([], []) β []
total_match(['hi', 'admin'], ['hI', 'Hi']) β ['hI', 'Hi']
total_match(['hi', 'admin'], ['hi', 'hi', 'admin', 'project']) β ['hi', 'admin']
total_match(['hi', 'admin'], ['hI', 'hi', 'hi']) β ['hI', 'hi', 'hi']
total_match(['4'], ['1', '2', '3', '4', '5']) β ['4']
'''
l1 = 0
for st in lst1:
l1 += len(st)
l2 = 0
for st in lst2:
# print('@@this is the line to split##')
l2 += len(st)
if l1 <= l2:
return lst1
else:
return lst2
|
HumanEval/75 |
def is_multiply_prime(a):
"""Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100.
Example:
is_multiply_prime(30) == True
30 = 2 * 3 * 5
"""
def is_prime(n):
for j in range(2,n):
if n%j == 0:
return False
return True
for i in range(2,101):
| is_multiply_prime | if not is_prime(i): continue
for j in range(2,101):
if not is_prime(j): continue
for k in range(2,101):
if not is_prime(k): continue
if i*j*k == a: return True
return False
| def check(candidate):
assert candidate(5) == False
assert candidate(30) == True
assert candidate(8) == True
assert candidate(10) == False
assert candidate(125) == True
assert candidate(3 * 5 * 7) == True
assert candidate(3 * 6 * 7) == False
assert candidate(9 * 9 * 9) == False
assert candidate(11 * 9 * 9) == False
assert candidate(11 * 13 * 7) == True
| 9 | new_lines |
def is_multiply_prime(a):
"""Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100.
Example:
is_multiply_prime(30) == True
30 = 2 * 3 * 5
"""
def is_prime(n):
for j in range(2,n):
if n%j == 0:
return False
return True
for i in range(2,101):
# print('@@this is the line to split##')
if not is_prime(i): continue
for j in range(2,101):
if not is_prime(j): continue
for k in range(2,101):
if not is_prime(k): continue
if i*j*k == a: return True
return False
|
HumanEval/76 |
def is_simple_power(x, n):
"""Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
is_simple_power(1, 4) => true
is_simple_power(2, 2) => true
is_simple_power(8, 2) => true
is_simple_power(3, 2) => false
is_simple_power(3, 1) => false
is_simple_power(5, 3) => false
"""
if (n == 1):
return (x == 1)
power = 1
| is_simple_power | while (power < x):
power = power * n
return (power == x)
| def check(candidate):
# Check some simple cases
assert candidate(16, 2)== True, "This prints if this assert fails 1 (good for debugging!)"
assert candidate(143214, 16)== False, "This prints if this assert fails 1 (good for debugging!)"
assert candidate(4, 2)==True, "This prints if this assert fails 1 (good for debugging!)"
assert candidate(9, 3)==True, "This prints if this assert fails 1 (good for debugging!)"
assert candidate(16, 4)==True, "This prints if this assert fails 1 (good for debugging!)"
assert candidate(24, 2)==False, "This prints if this assert fails 1 (good for debugging!)"
assert candidate(128, 4)==False, "This prints if this assert fails 1 (good for debugging!)"
assert candidate(12, 6)==False, "This prints if this assert fails 1 (good for debugging!)"
# Check some edge cases that are easy to work out by hand.
assert candidate(1, 1)==True, "This prints if this assert fails 2 (also good for debugging!)"
assert candidate(1, 12)==True, "This prints if this assert fails 2 (also good for debugging!)"
| 9 | new_lines |
def is_simple_power(x, n):
"""Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
is_simple_power(1, 4) => true
is_simple_power(2, 2) => true
is_simple_power(8, 2) => true
is_simple_power(3, 2) => false
is_simple_power(3, 1) => false
is_simple_power(5, 3) => false
"""
if (n == 1):
return (x == 1)
power = 1
# print('@@this is the line to split##')
while (power < x):
power = power * n
return (power == x)
|
HumanEval/77 |
def iscube(a):
'''
Write a function that takes an integer a and returns True
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(1) ==> True
iscube(2) ==> False
iscube(-1) ==> True
iscube(64) ==> True
iscube(0) ==> True
iscube(180) ==> False
'''
a = abs(a)
| iscube | return int(round(a ** (1. / 3))) ** 3 == a
| def check(candidate):
# Check some simple cases
assert candidate(1) == True, "First test error: " + str(candidate(1))
assert candidate(2) == False, "Second test error: " + str(candidate(2))
assert candidate(-1) == True, "Third test error: " + str(candidate(-1))
assert candidate(64) == True, "Fourth test error: " + str(candidate(64))
assert candidate(180) == False, "Fifth test error: " + str(candidate(180))
assert candidate(1000) == True, "Sixth test error: " + str(candidate(1000))
# Check some edge cases that are easy to work out by hand.
assert candidate(0) == True, "1st edge test error: " + str(candidate(0))
assert candidate(1729) == False, "2nd edge test error: " + str(candidate(1728))
| 9 | new_lines |
def iscube(a):
'''
Write a function that takes an integer a and returns True
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(1) ==> True
iscube(2) ==> False
iscube(-1) ==> True
iscube(64) ==> True
iscube(0) ==> True
iscube(180) ==> False
'''
a = abs(a)
# print('@@this is the line to split##')
return int(round(a ** (1. / 3))) ** 3 == a
|
HumanEval/78 |
def hex_key(num):
"""You have been tasked to write a function that receives
a hexadecimal number as a string and counts the number of hexadecimal
digits that are primes (prime number, or a prime, is a natural number
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7,
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string,
and symbols A,B,C,D,E,F are always uppercase.
Examples:
For num = "AB" the output should be 1.
For num = "1077E" the output should be 2.
For num = "ABED1A33" the output should be 4.
For num = "123456789ABCDEF0" the output should be 6.
For num = "2020" the output should be 2.
"""
primes = ('2', '3', '5', '7', 'B', 'D')
total = 0
for i in range(0, len(num)):
| hex_key | if num[i] in primes:
total += 1
return total
| def check(candidate):
# Check some simple cases
assert candidate("AB") == 1, "First test error: " + str(candidate("AB"))
assert candidate("1077E") == 2, "Second test error: " + str(candidate("1077E"))
assert candidate("ABED1A33") == 4, "Third test error: " + str(candidate("ABED1A33"))
assert candidate("2020") == 2, "Fourth test error: " + str(candidate("2020"))
assert candidate("123456789ABCDEF0") == 6, "Fifth test error: " + str(candidate("123456789ABCDEF0"))
assert candidate("112233445566778899AABBCCDDEEFF00") == 12, "Sixth test error: " + str(candidate("112233445566778899AABBCCDDEEFF00"))
# Check some edge cases that are easy to work out by hand.
assert candidate([]) == 0
| 9 | new_lines |
def hex_key(num):
"""You have been tasked to write a function that receives
a hexadecimal number as a string and counts the number of hexadecimal
digits that are primes (prime number, or a prime, is a natural number
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7,
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string,
and symbols A,B,C,D,E,F are always uppercase.
Examples:
For num = "AB" the output should be 1.
For num = "1077E" the output should be 2.
For num = "ABED1A33" the output should be 4.
For num = "123456789ABCDEF0" the output should be 6.
For num = "2020" the output should be 2.
"""
primes = ('2', '3', '5', '7', 'B', 'D')
total = 0
for i in range(0, len(num)):
# print('@@this is the line to split##')
if num[i] in primes:
total += 1
return total
|
HumanEval/79 |
def decimal_to_binary(decimal):
"""You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimal_to_binary(15) # returns "db1111db"
decimal_to_binary(32) # returns "db100000db"
"""
| decimal_to_binary | return "db" + bin(decimal)[2:] + "db"
| def check(candidate):
# Check some simple cases
assert candidate(0) == "db0db"
assert candidate(32) == "db100000db"
assert candidate(103) == "db1100111db"
assert candidate(15) == "db1111db", "This prints if this assert fails 1 (good for debugging!)"
# Check some edge cases that are easy to work out by hand.
assert True, "This prints if this assert fails 2 (also good for debugging!)"
| 9 | new_lines | null |
HumanEval/80 |
def is_happy(s):
"""You are given a string s.
Your task is to check if the string is happy or not.
A string is happy if its length is at least 3 and every 3 consecutive letters are distinct
For example:
is_happy(a) => False
is_happy(aa) => False
is_happy(abcd) => True
is_happy(aabb) => False
is_happy(adb) => True
is_happy(xyy) => False
"""
if len(s) < 3:
return False
for i in range(len(s) - 2):
| is_happy |
if s[i] == s[i+1] or s[i+1] == s[i+2] or s[i] == s[i+2]:
return False
return True
| def check(candidate):
# Check some simple cases
assert candidate("a") == False , "a"
assert candidate("aa") == False , "aa"
assert candidate("abcd") == True , "abcd"
assert candidate("aabb") == False , "aabb"
assert candidate("adb") == True , "adb"
assert candidate("xyy") == False , "xyy"
assert candidate("iopaxpoi") == True , "iopaxpoi"
assert candidate("iopaxioi") == False , "iopaxioi"
| 9 | new_lines |
def is_happy(s):
"""You are given a string s.
Your task is to check if the string is happy or not.
A string is happy if its length is at least 3 and every 3 consecutive letters are distinct
For example:
is_happy(a) => False
is_happy(aa) => False
is_happy(abcd) => True
is_happy(aabb) => False
is_happy(adb) => True
is_happy(xyy) => False
"""
if len(s) < 3:
return False
for i in range(len(s) - 2):
# print('@@this is the line to split##')
if s[i] == s[i+1] or s[i+1] == s[i+2] or s[i] == s[i+2]:
return False
return True
|
HumanEval/81 |
def numerical_letter_grade(grades):
"""It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you a list of GPAs for some students and you have to write
a function that can output a list of letter grades using the following table:
GPA | Letter grade
4.0 A+
> 3.7 A
> 3.3 A-
> 3.0 B+
> 2.7 B
> 2.3 B-
> 2.0 C+
> 1.7 C
> 1.3 C-
> 1.0 D+
> 0.7 D
> 0.0 D-
0.0 E
Example:
grade_equation([4.0, 3, 1.7, 2, 3.5]) ==> ['A+', 'B', 'C-', 'C', 'A-']
"""
letter_grade = []
for gpa in grades:
if gpa == 4.0:
letter_grade.append("A+")
elif gpa > 3.7:
letter_grade.append("A")
elif gpa > 3.3:
letter_grade.append("A-")
elif gpa > 3.0:
letter_grade.append("B+")
elif gpa > 2.7:
letter_grade.append("B")
elif gpa > 2.3:
| numerical_letter_grade | letter_grade.append("B-")
elif gpa > 2.0:
letter_grade.append("C+")
elif gpa > 1.7:
letter_grade.append("C")
elif gpa > 1.3:
letter_grade.append("C-")
elif gpa > 1.0:
letter_grade.append("D+")
elif gpa > 0.7:
letter_grade.append("D")
elif gpa > 0.0:
letter_grade.append("D-")
else:
letter_grade.append("E")
return letter_grade
| def check(candidate):
# Check some simple cases
assert candidate([4.0, 3, 1.7, 2, 3.5]) == ['A+', 'B', 'C-', 'C', 'A-']
assert candidate([1.2]) == ['D+']
assert candidate([0.5]) == ['D-']
assert candidate([0.0]) == ['E']
assert candidate([1, 0.3, 1.5, 2.8, 3.3]) == ['D', 'D-', 'C-', 'B', 'B+']
assert candidate([0, 0.7]) == ['E', 'D-']
# Check some edge cases that are easy to work out by hand.
assert True
| 9 | new_lines |
def numerical_letter_grade(grades):
"""It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you a list of GPAs for some students and you have to write
a function that can output a list of letter grades using the following table:
GPA | Letter grade
4.0 A+
> 3.7 A
> 3.3 A-
> 3.0 B+
> 2.7 B
> 2.3 B-
> 2.0 C+
> 1.7 C
> 1.3 C-
> 1.0 D+
> 0.7 D
> 0.0 D-
0.0 E
Example:
grade_equation([4.0, 3, 1.7, 2, 3.5]) ==> ['A+', 'B', 'C-', 'C', 'A-']
"""
letter_grade = []
for gpa in grades:
if gpa == 4.0:
letter_grade.append("A+")
elif gpa > 3.7:
letter_grade.append("A")
elif gpa > 3.3:
letter_grade.append("A-")
elif gpa > 3.0:
letter_grade.append("B+")
elif gpa > 2.7:
letter_grade.append("B")
elif gpa > 2.3:
# print('@@this is the line to split##')
letter_grade.append("B-")
elif gpa > 2.0:
letter_grade.append("C+")
elif gpa > 1.7:
letter_grade.append("C")
elif gpa > 1.3:
letter_grade.append("C-")
elif gpa > 1.0:
letter_grade.append("D+")
elif gpa > 0.7:
letter_grade.append("D")
elif gpa > 0.0:
letter_grade.append("D-")
else:
letter_grade.append("E")
return letter_grade
|
HumanEval/82 |
def prime_length(string):
"""Write a function that takes a string and returns True if the string
length is a prime number or False otherwise
Examples
prime_length('Hello') == True
prime_length('abcdcba') == True
prime_length('kittens') == True
prime_length('orange') == False
"""
l = len(string)
if l == 0 or l == 1:
return False
| prime_length | for i in range(2, l):
if l % i == 0:
return False
return True
| def check(candidate):
# Check some simple cases
assert candidate('Hello') == True
assert candidate('abcdcba') == True
assert candidate('kittens') == True
assert candidate('orange') == False
assert candidate('wow') == True
assert candidate('world') == True
assert candidate('MadaM') == True
assert candidate('Wow') == True
assert candidate('') == False
assert candidate('HI') == True
assert candidate('go') == True
assert candidate('gogo') == False
assert candidate('aaaaaaaaaaaaaaa') == False
# Check some edge cases that are easy to work out by hand.
assert candidate('Madam') == True
assert candidate('M') == False
assert candidate('0') == False
| 9 | new_lines |
def prime_length(string):
"""Write a function that takes a string and returns True if the string
length is a prime number or False otherwise
Examples
prime_length('Hello') == True
prime_length('abcdcba') == True
prime_length('kittens') == True
prime_length('orange') == False
"""
l = len(string)
if l == 0 or l == 1:
return False
# print('@@this is the line to split##')
for i in range(2, l):
if l % i == 0:
return False
return True
|
HumanEval/83 |
def starts_one_ends(n):
"""
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1.
"""
if n == 1: return 1
| starts_one_ends | return 18 * (10 ** (n - 2))
| def check(candidate):
# Check some simple cases
assert True, "This prints if this assert fails 1 (good for debugging!)"
assert candidate(1) == 1
assert candidate(2) == 18
assert candidate(3) == 180
assert candidate(4) == 1800
assert candidate(5) == 18000
# Check some edge cases that are easy to work out by hand.
assert True, "This prints if this assert fails 2 (also good for debugging!)"
| 9 | new_lines |
def starts_one_ends(n):
"""
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1.
"""
if n == 1: return 1
# print('@@this is the line to split##')
return 18 * (10 ** (n - 2))
|
HumanEval/84 |
def solve(N):
"""Given a positive integer N, return the total sum of its digits in binary.
Example
For N = 1000, the sum of digits will be 1 the output should be "1".
For N = 150, the sum of digits will be 6 the output should be "110".
For N = 147, the sum of digits will be 12 the output should be "1100".
Variables:
@N integer
Constraints: 0 β€ N β€ 10000.
Output:
a string of binary number
"""
| solve | return bin(sum(int(i) for i in str(N)))[2:]
| def check(candidate):
# Check some simple cases
assert True, "This prints if this assert fails 1 (good for debugging!)"
assert candidate(1000) == "1", "Error"
assert candidate(150) == "110", "Error"
assert candidate(147) == "1100", "Error"
# Check some edge cases that are easy to work out by hand.
assert True, "This prints if this assert fails 2 (also good for debugging!)"
assert candidate(333) == "1001", "Error"
assert candidate(963) == "10010", "Error"
| 9 | new_lines | null |
HumanEval/85 |
def add(lst):
"""Given a non-empty list of integers lst. add the even elements that are at odd indices..
Examples:
add([4, 2, 6, 7]) ==> 2
"""
| add | return sum([lst[i] for i in range(1, len(lst), 2) if lst[i]%2 == 0])
| def check(candidate):
# Check some simple cases
assert candidate([4, 88]) == 88
assert candidate([4, 5, 6, 7, 2, 122]) == 122
assert candidate([4, 0, 6, 7]) == 0
assert candidate([4, 4, 6, 8]) == 12
# Check some edge cases that are easy to work out by hand.
| 9 | new_lines | null |
HumanEval/86 |
def anti_shuffle(s):
"""
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
anti_shuffle('Hi') returns 'Hi'
anti_shuffle('hello') returns 'ehllo'
anti_shuffle('Hello World!!!') returns 'Hello !!!Wdlor'
"""
| anti_shuffle | return ' '.join([''.join(sorted(list(i))) for i in s.split(' ')])
| def check(candidate):
# Check some simple cases
assert candidate('Hi') == 'Hi'
assert candidate('hello') == 'ehllo'
assert candidate('number') == 'bemnru'
assert candidate('abcd') == 'abcd'
assert candidate('Hello World!!!') == 'Hello !!!Wdlor'
assert candidate('') == ''
assert candidate('Hi. My name is Mister Robot. How are you?') == '.Hi My aemn is Meirst .Rboot How aer ?ouy'
# Check some edge cases that are easy to work out by hand.
assert True
| 9 | new_lines | null |
HumanEval/87 |
def get_row(lst, x):
"""
You are given a 2 dimensional data, as a nested lists,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the list,
and return list of tuples, [(x1, y1), (x2, y2) ...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
get_row([
[1,2,3,4,5,6],
[1,2,3,4,1,6],
[1,2,3,4,5,1]
], 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
get_row([], 1) == []
get_row([[], [1], [1, 2, 3]], 3) == [(2, 2)]
"""
coords = [(i, j) for i in range(len(lst)) for j in range(len(lst[i])) if lst[i][j] == x]
| get_row | return sorted(sorted(coords, key=lambda x: x[1], reverse=True), key=lambda x: x[0])
| def check(candidate):
# Check some simple cases
assert candidate([
[1,2,3,4,5,6],
[1,2,3,4,1,6],
[1,2,3,4,5,1]
], 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
assert candidate([
[1,2,3,4,5,6],
[1,2,3,4,5,6],
[1,2,3,4,5,6],
[1,2,3,4,5,6],
[1,2,3,4,5,6],
[1,2,3,4,5,6]
], 2) == [(0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1)]
assert candidate([
[1,2,3,4,5,6],
[1,2,3,4,5,6],
[1,1,3,4,5,6],
[1,2,1,4,5,6],
[1,2,3,1,5,6],
[1,2,3,4,1,6],
[1,2,3,4,5,1]
], 1) == [(0, 0), (1, 0), (2, 1), (2, 0), (3, 2), (3, 0), (4, 3), (4, 0), (5, 4), (5, 0), (6, 5), (6, 0)]
assert candidate([], 1) == []
assert candidate([[1]], 2) == []
assert candidate([[], [1], [1, 2, 3]], 3) == [(2, 2)]
# Check some edge cases that are easy to work out by hand.
assert True
| 9 | new_lines |
def get_row(lst, x):
"""
You are given a 2 dimensional data, as a nested lists,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the list,
and return list of tuples, [(x1, y1), (x2, y2) ...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
get_row([
[1,2,3,4,5,6],
[1,2,3,4,1,6],
[1,2,3,4,5,1]
], 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
get_row([], 1) == []
get_row([[], [1], [1, 2, 3]], 3) == [(2, 2)]
"""
coords = [(i, j) for i in range(len(lst)) for j in range(len(lst[i])) if lst[i][j] == x]
# print('@@this is the line to split##')
return sorted(sorted(coords, key=lambda x: x[1], reverse=True), key=lambda x: x[0])
|
HumanEval/88 |
def sort_array(array):
"""
Given an array of non-negative integers, return a copy of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
* sort_array([]) => []
* sort_array([5]) => [5]
* sort_array([2, 4, 3, 0, 1, 5]) => [0, 1, 2, 3, 4, 5]
* sort_array([2, 4, 3, 0, 1, 5, 6]) => [6, 5, 4, 3, 2, 1, 0]
"""
| sort_array | return [] if len(array) == 0 else sorted(array, reverse= (array[0]+array[-1]) % 2 == 0)
| def check(candidate):
# Check some simple cases
assert True, "This prints if this assert fails 1 (good for debugging!)"
assert candidate([]) == [], "Error"
assert candidate([5]) == [5], "Error"
assert candidate([2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5], "Error"
assert candidate([2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0], "Error"
# Check some edge cases that are easy to work out by hand.
assert True, "This prints if this assert fails 2 (also good for debugging!)"
assert candidate([2, 1]) == [1, 2], "Error"
assert candidate([15, 42, 87, 32 ,11, 0]) == [0, 11, 15, 32, 42, 87], "Error"
assert candidate([21, 14, 23, 11]) == [23, 21, 14, 11], "Error"
| 9 | new_lines | null |
HumanEval/89 |
def encrypt(s):
"""Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated.
The alphabet should be rotated in a manner such that the letters
shift down by two multiplied to two places.
For example:
encrypt('hi') returns 'lm'
encrypt('asdfghjkl') returns 'ewhjklnop'
encrypt('gf') returns 'kj'
encrypt('et') returns 'ix'
"""
d = 'abcdefghijklmnopqrstuvwxyz'
out = ''
for c in s:
if c in d:
| encrypt | out += d[(d.index(c)+2*2) % 26]
else:
out += c
return out
| def check(candidate):
# Check some simple cases
assert candidate('hi') == 'lm', "This prints if this assert fails 1 (good for debugging!)"
assert candidate('asdfghjkl') == 'ewhjklnop', "This prints if this assert fails 1 (good for debugging!)"
assert candidate('gf') == 'kj', "This prints if this assert fails 1 (good for debugging!)"
assert candidate('et') == 'ix', "This prints if this assert fails 1 (good for debugging!)"
assert candidate('faewfawefaewg')=='jeiajeaijeiak', "This prints if this assert fails 1 (good for debugging!)"
assert candidate('hellomyfriend')=='lippsqcjvmirh', "This prints if this assert fails 2 (good for debugging!)"
assert candidate('dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh')=='hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl', "This prints if this assert fails 3 (good for debugging!)"
# Check some edge cases that are easy to work out by hand.
assert candidate('a')=='e', "This prints if this assert fails 2 (also good for debugging!)"
| 9 | new_lines |
def encrypt(s):
"""Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated.
The alphabet should be rotated in a manner such that the letters
shift down by two multiplied to two places.
For example:
encrypt('hi') returns 'lm'
encrypt('asdfghjkl') returns 'ewhjklnop'
encrypt('gf') returns 'kj'
encrypt('et') returns 'ix'
"""
d = 'abcdefghijklmnopqrstuvwxyz'
out = ''
for c in s:
if c in d:
# print('@@this is the line to split##')
out += d[(d.index(c)+2*2) % 26]
else:
out += c
return out
|
HumanEval/90 |
def next_smallest(lst):
"""
You are given a list of integers.
Write a function next_smallest() that returns the 2nd smallest element of the list.
Return None if there is no such element.
next_smallest([1, 2, 3, 4, 5]) == 2
next_smallest([5, 1, 4, 3, 2]) == 2
next_smallest([]) == None
next_smallest([1, 1]) == None
"""
lst = sorted(set(lst))
| next_smallest | return None if len(lst) < 2 else lst[1]
| def check(candidate):
# Check some simple cases
assert candidate([1, 2, 3, 4, 5]) == 2
assert candidate([5, 1, 4, 3, 2]) == 2
assert candidate([]) == None
assert candidate([1, 1]) == None
assert candidate([1,1,1,1,0]) == 1
assert candidate([1, 0**0]) == None
assert candidate([-35, 34, 12, -45]) == -35
# Check some edge cases that are easy to work out by hand.
assert True
| 9 | new_lines |
def next_smallest(lst):
"""
You are given a list of integers.
Write a function next_smallest() that returns the 2nd smallest element of the list.
Return None if there is no such element.
next_smallest([1, 2, 3, 4, 5]) == 2
next_smallest([5, 1, 4, 3, 2]) == 2
next_smallest([]) == None
next_smallest([1, 1]) == None
"""
lst = sorted(set(lst))
# print('@@this is the line to split##')
return None if len(lst) < 2 else lst[1]
|
HumanEval/91 |
def is_bored(S):
"""
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
>>> is_bored("Hello world")
0
>>> is_bored("The sky is blue. The sun is shining. I love this weather")
1
"""
import re
| is_bored | sentences = re.split(r'[.?!]\s*', S)
return sum(sentence[0:2] == 'I ' for sentence in sentences)
| def check(candidate):
# Check some simple cases
assert candidate("Hello world") == 0, "Test 1"
assert candidate("Is the sky blue?") == 0, "Test 2"
assert candidate("I love It !") == 1, "Test 3"
assert candidate("bIt") == 0, "Test 4"
assert candidate("I feel good today. I will be productive. will kill It") == 2, "Test 5"
assert candidate("You and I are going for a walk") == 0, "Test 6"
# Check some edge cases that are easy to work out by hand.
assert True, "This prints if this assert fails 2 (also good for debugging!)"
| 9 | new_lines |
def is_bored(S):
"""
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
>>> is_bored("Hello world")
0
>>> is_bored("The sky is blue. The sun is shining. I love this weather")
1
"""
import re
# print('@@this is the line to split##')
sentences = re.split(r'[.?!]\s*', S)
return sum(sentence[0:2] == 'I ' for sentence in sentences)
|
HumanEval/92 |
def any_int(x, y, z):
'''
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
any_int(5, 2, 7) β True
any_int(3, 2, 2) β False
any_int(3, -2, 1) β True
any_int(3.6, -2.2, 2) β False
'''
if isinstance(x,int) and isinstance(y,int) and isinstance(z,int):
if (x+y==z) or (x+z==y) or (y+z==x):
| any_int | return True
return False
return False
| def check(candidate):
# Check some simple cases
assert candidate(2, 3, 1)==True, "This prints if this assert fails 1 (good for debugging!)"
assert candidate(2.5, 2, 3)==False, "This prints if this assert fails 2 (good for debugging!)"
assert candidate(1.5, 5, 3.5)==False, "This prints if this assert fails 3 (good for debugging!)"
assert candidate(2, 6, 2)==False, "This prints if this assert fails 4 (good for debugging!)"
assert candidate(4, 2, 2)==True, "This prints if this assert fails 5 (good for debugging!)"
assert candidate(2.2, 2.2, 2.2)==False, "This prints if this assert fails 6 (good for debugging!)"
assert candidate(-4, 6, 2)==True, "This prints if this assert fails 7 (good for debugging!)"
# Check some edge cases that are easy to work out by hand.
assert candidate(2,1,1)==True, "This prints if this assert fails 8 (also good for debugging!)"
assert candidate(3,4,7)==True, "This prints if this assert fails 9 (also good for debugging!)"
assert candidate(3.0,4,7)==False, "This prints if this assert fails 10 (also good for debugging!)"
| 9 | new_lines |
def any_int(x, y, z):
'''
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
any_int(5, 2, 7) β True
any_int(3, 2, 2) β False
any_int(3, -2, 1) β True
any_int(3.6, -2.2, 2) β False
'''
if isinstance(x,int) and isinstance(y,int) and isinstance(z,int):
if (x+y==z) or (x+z==y) or (y+z==x):
# print('@@this is the line to split##')
return True
return False
return False
|
HumanEval/93 |
def encode(message):
"""
Write a function that takes a message, and encodes in such a
way that it swaps case of all letters, replaces all vowels in
the message with the letter that appears 2 places ahead of that
vowel in the english alphabet.
Assume only letters.
Examples:
>>> encode('test')
'TGST'
>>> encode('This is a message')
'tHKS KS C MGSSCGG'
"""
vowels = "aeiouAEIOU"
vowels_replace = dict([(i, chr(ord(i) + 2)) for i in vowels])
| encode | message = message.swapcase()
return ''.join([vowels_replace[i] if i in vowels else i for i in message])
| def check(candidate):
# Check some simple cases
assert candidate('TEST') == 'tgst', "This prints if this assert fails 1 (good for debugging!)"
assert candidate('Mudasir') == 'mWDCSKR', "This prints if this assert fails 2 (good for debugging!)"
assert candidate('YES') == 'ygs', "This prints if this assert fails 3 (good for debugging!)"
# Check some edge cases that are easy to work out by hand.
assert candidate('This is a message') == 'tHKS KS C MGSSCGG', "This prints if this assert fails 2 (also good for debugging!)"
assert candidate("I DoNt KnOw WhAt tO WrItE") == 'k dQnT kNqW wHcT Tq wRkTg', "This prints if this assert fails 2 (also good for debugging!)"
| 9 | new_lines |
def encode(message):
"""
Write a function that takes a message, and encodes in such a
way that it swaps case of all letters, replaces all vowels in
the message with the letter that appears 2 places ahead of that
vowel in the english alphabet.
Assume only letters.
Examples:
>>> encode('test')
'TGST'
>>> encode('This is a message')
'tHKS KS C MGSSCGG'
"""
vowels = "aeiouAEIOU"
vowels_replace = dict([(i, chr(ord(i) + 2)) for i in vowels])
# print('@@this is the line to split##')
message = message.swapcase()
return ''.join([vowels_replace[i] if i in vowels else i for i in message])
|
HumanEval/94 |
def skjkasdkd(lst):
"""You are given a list of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
For lst = [0,3,2,1,3,5,7,4,5,5,5,2,181,32,4,32,3,2,32,324,4,3] the output should be 10
For lst = [1,0,1,8,2,4597,2,1,3,40,1,2,1,2,4,2,5,1] the output should be 25
For lst = [1,3,1,32,5107,34,83278,109,163,23,2323,32,30,1,9,3] the output should be 13
For lst = [0,724,32,71,99,32,6,0,5,91,83,0,5,6] the output should be 11
For lst = [0,81,12,3,1,21] the output should be 3
For lst = [0,8,1,2,1,7] the output should be 7
"""
def isPrime(n):
for i in range(2,int(n**0.5)+1):
if n%i==0:
return False
return True
maxx = 0
| skjkasdkd | i = 0
while i < len(lst):
if(lst[i] > maxx and isPrime(lst[i])):
maxx = lst[i]
i+=1
result = sum(int(digit) for digit in str(maxx))
return result
| def check(candidate):
# Check some simple cases
assert candidate([0,3,2,1,3,5,7,4,5,5,5,2,181,32,4,32,3,2,32,324,4,3]) == 10, "This prints if this assert fails 1 (good for debugging!)"
# Check some edge cases that are easy to work out by hand.
assert candidate([1,0,1,8,2,4597,2,1,3,40,1,2,1,2,4,2,5,1]) == 25, "This prints if this assert fails 2 (also good for debugging!)"
# Check some edge cases that are easy to work out by hand.
assert candidate([1,3,1,32,5107,34,83278,109,163,23,2323,32,30,1,9,3]) == 13, "This prints if this assert fails 3 (also good for debugging!)"
# Check some edge cases that are easy to work out by hand.
assert candidate([0,724,32,71,99,32,6,0,5,91,83,0,5,6]) == 11, "This prints if this assert fails 4 (also good for debugging!)"
# Check some edge cases that are easy to work out by hand.
assert candidate([0,81,12,3,1,21]) == 3, "This prints if this assert fails 5 (also good for debugging!)"
# Check some edge cases that are easy to work out by hand.
assert candidate([0,8,1,2,1,7]) == 7, "This prints if this assert fails 6 (also good for debugging!)"
assert candidate([8191]) == 19, "This prints if this assert fails 7 (also good for debugging!)"
assert candidate([8191, 123456, 127, 7]) == 19, "This prints if this assert fails 8 (also good for debugging!)"
assert candidate([127, 97, 8192]) == 10, "This prints if this assert fails 9 (also good for debugging!)"
| 9 | new_lines |
def skjkasdkd(lst):
"""You are given a list of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
For lst = [0,3,2,1,3,5,7,4,5,5,5,2,181,32,4,32,3,2,32,324,4,3] the output should be 10
For lst = [1,0,1,8,2,4597,2,1,3,40,1,2,1,2,4,2,5,1] the output should be 25
For lst = [1,3,1,32,5107,34,83278,109,163,23,2323,32,30,1,9,3] the output should be 13
For lst = [0,724,32,71,99,32,6,0,5,91,83,0,5,6] the output should be 11
For lst = [0,81,12,3,1,21] the output should be 3
For lst = [0,8,1,2,1,7] the output should be 7
"""
def isPrime(n):
for i in range(2,int(n**0.5)+1):
if n%i==0:
return False
return True
maxx = 0
# print('@@this is the line to split##')
i = 0
while i < len(lst):
if(lst[i] > maxx and isPrime(lst[i])):
maxx = lst[i]
i+=1
result = sum(int(digit) for digit in str(maxx))
return result
|
HumanEval/95 |
def check_dict_case(dict):
"""
Given a dictionary, return True if all keys are strings in lower
case or all keys are strings in upper case, else return False.
The function should return False is the given dictionary is empty.
Examples:
check_dict_case({"a":"apple", "b":"banana"}) should return True.
check_dict_case({"a":"apple", "A":"banana", "B":"banana"}) should return False.
check_dict_case({"a":"apple", 8:"banana", "a":"apple"}) should return False.
check_dict_case({"Name":"John", "Age":"36", "City":"Houston"}) should return False.
check_dict_case({"STATE":"NC", "ZIP":"12345" }) should return True.
"""
if len(dict.keys()) == 0:
return False
else:
state = "start"
for key in dict.keys():
if isinstance(key, str) == False:
state = "mixed"
break
if state == "start":
if key.isupper():
| check_dict_case | state = "upper"
elif key.islower():
state = "lower"
else:
break
elif (state == "upper" and not key.isupper()) or (state == "lower" and not key.islower()):
state = "mixed"
break
else:
break
return state == "upper" or state == "lower"
| def check(candidate):
# Check some simple cases
assert candidate({"p":"pineapple", "b":"banana"}) == True, "First test error: " + str(candidate({"p":"pineapple", "b":"banana"}))
assert candidate({"p":"pineapple", "A":"banana", "B":"banana"}) == False, "Second test error: " + str(candidate({"p":"pineapple", "A":"banana", "B":"banana"}))
assert candidate({"p":"pineapple", 5:"banana", "a":"apple"}) == False, "Third test error: " + str(candidate({"p":"pineapple", 5:"banana", "a":"apple"}))
assert candidate({"Name":"John", "Age":"36", "City":"Houston"}) == False, "Fourth test error: " + str(candidate({"Name":"John", "Age":"36", "City":"Houston"}))
assert candidate({"STATE":"NC", "ZIP":"12345" }) == True, "Fifth test error: " + str(candidate({"STATE":"NC", "ZIP":"12345" }))
assert candidate({"fruit":"Orange", "taste":"Sweet" }) == True, "Fourth test error: " + str(candidate({"fruit":"Orange", "taste":"Sweet" }))
# Check some edge cases that are easy to work out by hand.
assert candidate({}) == False, "1st edge test error: " + str(candidate({}))
| 9 | new_lines |
def check_dict_case(dict):
"""
Given a dictionary, return True if all keys are strings in lower
case or all keys are strings in upper case, else return False.
The function should return False is the given dictionary is empty.
Examples:
check_dict_case({"a":"apple", "b":"banana"}) should return True.
check_dict_case({"a":"apple", "A":"banana", "B":"banana"}) should return False.
check_dict_case({"a":"apple", 8:"banana", "a":"apple"}) should return False.
check_dict_case({"Name":"John", "Age":"36", "City":"Houston"}) should return False.
check_dict_case({"STATE":"NC", "ZIP":"12345" }) should return True.
"""
if len(dict.keys()) == 0:
return False
else:
state = "start"
for key in dict.keys():
if isinstance(key, str) == False:
state = "mixed"
break
if state == "start":
if key.isupper():
# print('@@this is the line to split##')
state = "upper"
elif key.islower():
state = "lower"
else:
break
elif (state == "upper" and not key.isupper()) or (state == "lower" and not key.islower()):
state = "mixed"
break
else:
break
return state == "upper" or state == "lower"
|
HumanEval/96 |
def count_up_to(n):
"""Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
count_up_to(5) => [2,3]
count_up_to(11) => [2,3,5,7]
count_up_to(0) => []
count_up_to(20) => [2,3,5,7,11,13,17,19]
count_up_to(1) => []
count_up_to(18) => [2,3,5,7,11,13,17]
"""
primes = []
for i in range(2, n):
is_prime = True
for j in range(2, i):
if i % j == 0:
| count_up_to | is_prime = False
break
if is_prime:
primes.append(i)
return primes
| def check(candidate):
assert candidate(5) == [2,3]
assert candidate(6) == [2,3,5]
assert candidate(7) == [2,3,5]
assert candidate(10) == [2,3,5,7]
assert candidate(0) == []
assert candidate(22) == [2,3,5,7,11,13,17,19]
assert candidate(1) == []
assert candidate(18) == [2,3,5,7,11,13,17]
assert candidate(47) == [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43]
assert candidate(101) == [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
| 9 | new_lines |
def count_up_to(n):
"""Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
count_up_to(5) => [2,3]
count_up_to(11) => [2,3,5,7]
count_up_to(0) => []
count_up_to(20) => [2,3,5,7,11,13,17,19]
count_up_to(1) => []
count_up_to(18) => [2,3,5,7,11,13,17]
"""
primes = []
for i in range(2, n):
is_prime = True
for j in range(2, i):
if i % j == 0:
# print('@@this is the line to split##')
is_prime = False
break
if is_prime:
primes.append(i)
return primes
|
HumanEval/97 |
def multiply(a, b):
"""Complete the function that takes two integers and returns
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(148, 412) should return 16.
multiply(19, 28) should return 72.
multiply(2020, 1851) should return 0.
multiply(14,-15) should return 20.
"""
| multiply | return abs(a % 10) * abs(b % 10)
| def check(candidate):
# Check some simple cases
assert candidate(148, 412) == 16, "First test error: " + str(candidate(148, 412))
assert candidate(19, 28) == 72, "Second test error: " + str(candidate(19, 28))
assert candidate(2020, 1851) == 0, "Third test error: " + str(candidate(2020, 1851))
assert candidate(14,-15) == 20, "Fourth test error: " + str(candidate(14,-15))
assert candidate(76, 67) == 42, "Fifth test error: " + str(candidate(76, 67))
assert candidate(17, 27) == 49, "Sixth test error: " + str(candidate(17, 27))
# Check some edge cases that are easy to work out by hand.
assert candidate(0, 1) == 0, "1st edge test error: " + str(candidate(0, 1))
assert candidate(0, 0) == 0, "2nd edge test error: " + str(candidate(0, 0))
| 9 | new_lines | null |
HumanEval/98 |
def count_upper(s):
"""
Given a string s, count the number of uppercase vowels in even indices.
For example:
count_upper('aBCdEf') returns 1
count_upper('abcdefg') returns 0
count_upper('dBBE') returns 0
"""
count = 0
for i in range(0,len(s),2):
| count_upper | if s[i] in "AEIOU":
count += 1
return count
| def check(candidate):
# Check some simple cases
assert candidate('aBCdEf') == 1
assert candidate('abcdefg') == 0
assert candidate('dBBE') == 0
assert candidate('B') == 0
assert candidate('U') == 1
assert candidate('') == 0
assert candidate('EEEE') == 2
# Check some edge cases that are easy to work out by hand.
assert True
| 9 | new_lines |
def count_upper(s):
"""
Given a string s, count the number of uppercase vowels in even indices.
For example:
count_upper('aBCdEf') returns 1
count_upper('abcdefg') returns 0
count_upper('dBBE') returns 0
"""
count = 0
for i in range(0,len(s),2):
# print('@@this is the line to split##')
if s[i] in "AEIOU":
count += 1
return count
|
HumanEval/99 |
def closest_integer(value):
'''
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
>>> closest_integer("10")
10
>>> closest_integer("15.3")
15
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
'''
from math import floor, ceil
if value.count('.') == 1:
# remove trailing zeros
while (value[-1] == '0'):
value = value[:-1]
num = float(value)
if value[-2:] == '.5':
if num > 0:
| closest_integer | res = ceil(num)
else:
res = floor(num)
elif len(value) > 0:
res = int(round(num))
else:
res = 0
return res
| def check(candidate):
# Check some simple cases
assert candidate("10") == 10, "Test 1"
assert candidate("14.5") == 15, "Test 2"
assert candidate("-15.5") == -16, "Test 3"
assert candidate("15.3") == 15, "Test 3"
# Check some edge cases that are easy to work out by hand.
assert candidate("0") == 0, "Test 0"
| 9 | new_lines |
def closest_integer(value):
'''
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
>>> closest_integer("10")
10
>>> closest_integer("15.3")
15
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
'''
from math import floor, ceil
if value.count('.') == 1:
# remove trailing zeros
while (value[-1] == '0'):
value = value[:-1]
num = float(value)
if value[-2:] == '.5':
if num > 0:
# print('@@this is the line to split##')
res = ceil(num)
else:
res = floor(num)
elif len(value) > 0:
res = int(round(num))
else:
res = 0
return res
|
HumanEval/100 |
def make_a_pile(n):
"""
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in a list, where element at index
i represents the number of stones in the level (i+1).
Examples:
>>> make_a_pile(3)
[3, 5, 7]
"""
| make_a_pile | return [n + 2*i for i in range(n)]
| def check(candidate):
# Check some simple cases
assert candidate(3) == [3, 5, 7], "Test 3"
assert candidate(4) == [4,6,8,10], "Test 4"
assert candidate(5) == [5, 7, 9, 11, 13]
assert candidate(6) == [6, 8, 10, 12, 14, 16]
assert candidate(8) == [8, 10, 12, 14, 16, 18, 20, 22]
# Check some edge cases that are easy to work out by hand.
assert True, "This prints if this assert fails 2 (also good for debugging!)"
| 9 | new_lines | null |
HumanEval/101 |
def words_string(s):
"""
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
words_string("Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
words_string("One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"]
"""
if not s:
return []
s_list = []
for letter in s:
| words_string | if letter == ',':
s_list.append(' ')
else:
s_list.append(letter)
s_list = "".join(s_list)
return s_list.split()
| def check(candidate):
# Check some simple cases
assert True, "This prints if this assert fails 1 (good for debugging!)"
assert candidate("Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
assert candidate("One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"]
assert candidate("Hi, my name") == ["Hi", "my", "name"]
assert candidate("One,, two, three, four, five, six,") == ["One", "two", "three", "four", "five", "six"]
# Check some edge cases that are easy to work out by hand.
assert True, "This prints if this assert fails 2 (also good for debugging!)"
assert candidate("") == []
assert candidate("ahmed , gamal") == ["ahmed", "gamal"]
| 9 | new_lines |
def words_string(s):
"""
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
words_string("Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
words_string("One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"]
"""
if not s:
return []
s_list = []
for letter in s:
# print('@@this is the line to split##')
if letter == ',':
s_list.append(' ')
else:
s_list.append(letter)
s_list = "".join(s_list)
return s_list.split()
|
HumanEval/102 |
def choose_num(x, y):
"""This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If
there's no such number, then the function should return -1.
For example:
choose_num(12, 15) = 14
choose_num(13, 12) = -1
"""
if x > y:
return -1
if y % 2 == 0:
| choose_num | return y
if x == y:
return -1
return y - 1
| def check(candidate):
# Check some simple cases
assert candidate(12, 15) == 14
assert candidate(13, 12) == -1
assert candidate(33, 12354) == 12354
assert candidate(5234, 5233) == -1
assert candidate(6, 29) == 28
assert candidate(27, 10) == -1
# Check some edge cases that are easy to work out by hand.
assert candidate(7, 7) == -1
assert candidate(546, 546) == 546
| 9 | new_lines |
def choose_num(x, y):
"""This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If
there's no such number, then the function should return -1.
For example:
choose_num(12, 15) = 14
choose_num(13, 12) = -1
"""
if x > y:
return -1
if y % 2 == 0:
# print('@@this is the line to split##')
return y
if x == y:
return -1
return y - 1
|
HumanEval/103 |
def rounded_avg(n, m):
"""You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m).
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
rounded_avg(1, 5) => "0b11"
rounded_avg(7, 5) => -1
rounded_avg(10, 20) => "0b1111"
rounded_avg(20, 33) => "0b11010"
"""
if m < n:
return -1
summation = 0
| rounded_avg | for i in range(n, m+1):
summation += i
return bin(round(summation/(m - n + 1)))
| def check(candidate):
# Check some simple cases
assert candidate(1, 5) == "0b11"
assert candidate(7, 13) == "0b1010"
assert candidate(964,977) == "0b1111001010"
assert candidate(996,997) == "0b1111100100"
assert candidate(560,851) == "0b1011000010"
assert candidate(185,546) == "0b101101110"
assert candidate(362,496) == "0b110101101"
assert candidate(350,902) == "0b1001110010"
assert candidate(197,233) == "0b11010111"
# Check some edge cases that are easy to work out by hand.
assert candidate(7, 5) == -1
assert candidate(5, 1) == -1
assert candidate(5, 5) == "0b101"
| 9 | new_lines |
def rounded_avg(n, m):
"""You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m).
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
rounded_avg(1, 5) => "0b11"
rounded_avg(7, 5) => -1
rounded_avg(10, 20) => "0b1111"
rounded_avg(20, 33) => "0b11010"
"""
if m < n:
return -1
summation = 0
# print('@@this is the line to split##')
for i in range(n, m+1):
summation += i
return bin(round(summation/(m - n + 1)))
|
HumanEval/104 |
def unique_digits(x):
"""Given a list of positive integers x. return a sorted list of all
elements that hasn't any even digit.
Note: Returned list should be sorted in increasing order.
For example:
>>> unique_digits([15, 33, 1422, 1])
[1, 15, 33]
>>> unique_digits([152, 323, 1422, 10])
[]
"""
odd_digit_elements = []
for i in x:
| unique_digits | if all (int(c) % 2 == 1 for c in str(i)):
odd_digit_elements.append(i)
return sorted(odd_digit_elements)
| def check(candidate):
# Check some simple cases
assert candidate([15, 33, 1422, 1]) == [1, 15, 33]
assert candidate([152, 323, 1422, 10]) == []
assert candidate([12345, 2033, 111, 151]) == [111, 151]
assert candidate([135, 103, 31]) == [31, 135]
# Check some edge cases that are easy to work out by hand.
assert True
| 9 | new_lines |
def unique_digits(x):
"""Given a list of positive integers x. return a sorted list of all
elements that hasn't any even digit.
Note: Returned list should be sorted in increasing order.
For example:
>>> unique_digits([15, 33, 1422, 1])
[1, 15, 33]
>>> unique_digits([152, 323, 1422, 10])
[]
"""
odd_digit_elements = []
for i in x:
# print('@@this is the line to split##')
if all (int(c) % 2 == 1 for c in str(i)):
odd_digit_elements.append(i)
return sorted(odd_digit_elements)
|
HumanEval/105 |
def by_length(arr):
"""
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
arr = [2, 1, 1, 4, 5, 8, 2, 3]
-> sort arr -> [1, 1, 2, 2, 3, 4, 5, 8]
-> reverse arr -> [8, 5, 4, 3, 2, 2, 1, 1]
return ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
If the array is empty, return an empty array:
arr = []
return []
If the array has any strange number ignore it:
arr = [1, -1 , 55]
-> sort arr -> [-1, 1, 55]
-> reverse arr -> [55, 1, -1]
return = ['One']
"""
dic = {
1: "One",
2: "Two",
3: "Three",
4: "Four",
5: "Five",
6: "Six",
7: "Seven",
8: "Eight",
| by_length | 9: "Nine",
}
sorted_arr = sorted(arr, reverse=True)
new_arr = []
for var in sorted_arr:
try:
new_arr.append(dic[var])
except:
pass
return new_arr
| def check(candidate):
# Check some simple cases
assert True, "This prints if this assert fails 1 (good for debugging!)"
assert candidate([2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"], "Error"
assert candidate([]) == [], "Error"
assert candidate([1, -1 , 55]) == ['One'], "Error"
# Check some edge cases that are easy to work out by hand.
assert True, "This prints if this assert fails 2 (also good for debugging!)"
assert candidate([1, -1, 3, 2]) == ["Three", "Two", "One"]
assert candidate([9, 4, 8]) == ["Nine", "Eight", "Four"]
| 9 | new_lines |
def by_length(arr):
"""
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
arr = [2, 1, 1, 4, 5, 8, 2, 3]
-> sort arr -> [1, 1, 2, 2, 3, 4, 5, 8]
-> reverse arr -> [8, 5, 4, 3, 2, 2, 1, 1]
return ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
If the array is empty, return an empty array:
arr = []
return []
If the array has any strange number ignore it:
arr = [1, -1 , 55]
-> sort arr -> [-1, 1, 55]
-> reverse arr -> [55, 1, -1]
return = ['One']
"""
dic = {
1: "One",
2: "Two",
3: "Three",
4: "Four",
5: "Five",
6: "Six",
7: "Seven",
8: "Eight",
# print('@@this is the line to split##')
9: "Nine",
}
sorted_arr = sorted(arr, reverse=True)
new_arr = []
for var in sorted_arr:
try:
new_arr.append(dic[var])
except:
pass
return new_arr
|
HumanEval/106 |
def f(n):
""" Implement the function f that takes n as a parameter,
and returns a list of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
f(5) == [1, 2, 6, 24, 15]
"""
ret = []
for i in range(1,n+1):
if i%2 == 0:
x = 1
for j in range(1,i+1): x *= j
| f | ret += [x]
else:
x = 0
for j in range(1,i+1): x += j
ret += [x]
return ret
| def check(candidate):
assert candidate(5) == [1, 2, 6, 24, 15]
assert candidate(7) == [1, 2, 6, 24, 15, 720, 28]
assert candidate(1) == [1]
assert candidate(3) == [1, 2, 6]
| 9 | new_lines |
def f(n):
""" Implement the function f that takes n as a parameter,
and returns a list of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
f(5) == [1, 2, 6, 24, 15]
"""
ret = []
for i in range(1,n+1):
if i%2 == 0:
x = 1
for j in range(1,i+1): x *= j
# print('@@this is the line to split##')
ret += [x]
else:
x = 0
for j in range(1,i+1): x += j
ret += [x]
return ret
|
HumanEval/107 |
def even_odd_palindrome(n):
"""
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Input: 3
Output: (1, 2)
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Input: 12
Output: (4, 6)
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
"""
def is_palindrome(n):
return str(n) == str(n)[::-1]
even_palindrome_count = 0
odd_palindrome_count = 0
| even_odd_palindrome | for i in range(1, n+1):
if i%2 == 1 and is_palindrome(i):
odd_palindrome_count += 1
elif i%2 == 0 and is_palindrome(i):
even_palindrome_count += 1
return (even_palindrome_count, odd_palindrome_count)
| def check(candidate):
# Check some simple cases
assert candidate(123) == (8, 13)
assert candidate(12) == (4, 6)
assert candidate(3) == (1, 2)
assert candidate(63) == (6, 8)
assert candidate(25) == (5, 6)
assert candidate(19) == (4, 6)
assert candidate(9) == (4, 5), "This prints if this assert fails 1 (good for debugging!)"
# Check some edge cases that are easy to work out by hand.
assert candidate(1) == (0, 1), "This prints if this assert fails 2 (also good for debugging!)"
| 9 | new_lines |
def even_odd_palindrome(n):
"""
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Input: 3
Output: (1, 2)
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Input: 12
Output: (4, 6)
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
"""
def is_palindrome(n):
return str(n) == str(n)[::-1]
even_palindrome_count = 0
odd_palindrome_count = 0
# print('@@this is the line to split##')
for i in range(1, n+1):
if i%2 == 1 and is_palindrome(i):
odd_palindrome_count += 1
elif i%2 == 0 and is_palindrome(i):
even_palindrome_count += 1
return (even_palindrome_count, odd_palindrome_count)
|
HumanEval/108 |
def count_nums(arr):
"""
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
>>> count_nums([]) == 0
>>> count_nums([-1, 11, -11]) == 1
>>> count_nums([1, 1, 2]) == 3
"""
def digits_sum(n):
neg = 1
if n < 0: n, neg = -1 * n, -1
| count_nums | n = [int(i) for i in str(n)]
n[0] = n[0] * neg
return sum(n)
return len(list(filter(lambda x: x > 0, [digits_sum(i) for i in arr])))
| def check(candidate):
# Check some simple cases
assert candidate([]) == 0
assert candidate([-1, -2, 0]) == 0
assert candidate([1, 1, 2, -2, 3, 4, 5]) == 6
assert candidate([1, 6, 9, -6, 0, 1, 5]) == 5
assert candidate([1, 100, 98, -7, 1, -1]) == 4
assert candidate([12, 23, 34, -45, -56, 0]) == 5
assert candidate([-0, 1**0]) == 1
assert candidate([1]) == 1
# Check some edge cases that are easy to work out by hand.
assert True, "This prints if this assert fails 2 (also good for debugging!)"
| 9 | new_lines |
def count_nums(arr):
"""
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
>>> count_nums([]) == 0
>>> count_nums([-1, 11, -11]) == 1
>>> count_nums([1, 1, 2]) == 3
"""
def digits_sum(n):
neg = 1
if n < 0: n, neg = -1 * n, -1
# print('@@this is the line to split##')
n = [int(i) for i in str(n)]
n[0] = n[0] * neg
return sum(n)
return len(list(filter(lambda x: x > 0, [digits_sum(i) for i in arr])))
|
HumanEval/109 |
def move_one_ball(arr):
"""We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index.
If it is possible to obtain the sorted array by performing the above operation
then return True else return False.
If the given array is empty then return True.
Note: The given list is guaranteed to have unique elements.
For Example:
move_one_ball([3, 4, 5, 1, 2])==>True
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
move_one_ball([3, 5, 4, 1, 2])==>False
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
"""
if len(arr)==0:
return True
sorted_array=sorted(arr)
my_arr=[]
min_value=min(arr)
| move_one_ball | min_index=arr.index(min_value)
my_arr=arr[min_index:]+arr[0:min_index]
for i in range(len(arr)):
if my_arr[i]!=sorted_array[i]:
return False
return True
| def check(candidate):
# Check some simple cases
assert candidate([3, 4, 5, 1, 2])==True, "This prints if this assert fails 1 (good for debugging!)"
assert candidate([3, 5, 10, 1, 2])==True
assert candidate([4, 3, 1, 2])==False
# Check some edge cases that are easy to work out by hand.
assert candidate([3, 5, 4, 1, 2])==False, "This prints if this assert fails 2 (also good for debugging!)"
assert candidate([])==True
| 9 | new_lines |
def move_one_ball(arr):
"""We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index.
If it is possible to obtain the sorted array by performing the above operation
then return True else return False.
If the given array is empty then return True.
Note: The given list is guaranteed to have unique elements.
For Example:
move_one_ball([3, 4, 5, 1, 2])==>True
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
move_one_ball([3, 5, 4, 1, 2])==>False
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
"""
if len(arr)==0:
return True
sorted_array=sorted(arr)
my_arr=[]
min_value=min(arr)
# print('@@this is the line to split##')
min_index=arr.index(min_value)
my_arr=arr[min_index:]+arr[0:min_index]
for i in range(len(arr)):
if my_arr[i]!=sorted_array[i]:
return False
return True
|
HumanEval/110 |
def exchange(lst1, lst2):
"""In this problem, you will implement a function that takes two lists of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 a list of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
exchange([1, 2, 3, 4], [1, 2, 3, 4]) => "YES"
exchange([1, 2, 3, 4], [1, 5, 3, 4]) => "NO"
It is assumed that the input lists will be non-empty.
"""
odd = 0
even = 0
for i in lst1:
if i%2 == 1:
odd += 1
for i in lst2:
| exchange | if i%2 == 0:
even += 1
if even >= odd:
return "YES"
return "NO"
| def check(candidate):
# Check some simple cases
assert candidate([1, 2, 3, 4], [1, 2, 3, 4]) == "YES"
assert candidate([1, 2, 3, 4], [1, 5, 3, 4]) == "NO"
assert candidate([1, 2, 3, 4], [2, 1, 4, 3]) == "YES"
assert candidate([5, 7, 3], [2, 6, 4]) == "YES"
assert candidate([5, 7, 3], [2, 6, 3]) == "NO"
assert candidate([3, 2, 6, 1, 8, 9], [3, 5, 5, 1, 1, 1]) == "NO"
# Check some edge cases that are easy to work out by hand.
assert candidate([100, 200], [200, 200]) == "YES"
| 9 | new_lines |
def exchange(lst1, lst2):
"""In this problem, you will implement a function that takes two lists of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 a list of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
exchange([1, 2, 3, 4], [1, 2, 3, 4]) => "YES"
exchange([1, 2, 3, 4], [1, 5, 3, 4]) => "NO"
It is assumed that the input lists will be non-empty.
"""
odd = 0
even = 0
for i in lst1:
if i%2 == 1:
odd += 1
for i in lst2:
# print('@@this is the line to split##')
if i%2 == 0:
even += 1
if even >= odd:
return "YES"
return "NO"
|
HumanEval/111 |
def histogram(test):
"""Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram('a b c') == {'a': 1, 'b': 1, 'c': 1}
histogram('a b b a') == {'a': 2, 'b': 2}
histogram('a b c a b') == {'a': 2, 'b': 2}
histogram('b b b b a') == {'b': 4}
histogram('') == {}
"""
dict1={}
list1=test.split(" ")
t=0
for i in list1:
if(list1.count(i)>t) and i!='':
| histogram | t=list1.count(i)
if t>0:
for i in list1:
if(list1.count(i)==t):
dict1[i]=t
return dict1
| def check(candidate):
# Check some simple cases
assert candidate('a b b a') == {'a':2,'b': 2}, "This prints if this assert fails 1 (good for debugging!)"
assert candidate('a b c a b') == {'a': 2, 'b': 2}, "This prints if this assert fails 2 (good for debugging!)"
assert candidate('a b c d g') == {'a': 1, 'b': 1, 'c': 1, 'd': 1, 'g': 1}, "This prints if this assert fails 3 (good for debugging!)"
assert candidate('r t g') == {'r': 1,'t': 1,'g': 1}, "This prints if this assert fails 4 (good for debugging!)"
assert candidate('b b b b a') == {'b': 4}, "This prints if this assert fails 5 (good for debugging!)"
assert candidate('r t g') == {'r': 1,'t': 1,'g': 1}, "This prints if this assert fails 6 (good for debugging!)"
# Check some edge cases that are easy to work out by hand.
assert candidate('') == {}, "This prints if this assert fails 7 (also good for debugging!)"
assert candidate('a') == {'a': 1}, "This prints if this assert fails 8 (also good for debugging!)"
| 9 | new_lines |
def histogram(test):
"""Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram('a b c') == {'a': 1, 'b': 1, 'c': 1}
histogram('a b b a') == {'a': 2, 'b': 2}
histogram('a b c a b') == {'a': 2, 'b': 2}
histogram('b b b b a') == {'b': 4}
histogram('') == {}
"""
dict1={}
list1=test.split(" ")
t=0
for i in list1:
if(list1.count(i)>t) and i!='':
# print('@@this is the line to split##')
t=list1.count(i)
if t>0:
for i in list1:
if(list1.count(i)==t):
dict1[i]=t
return dict1
|
HumanEval/112 |
def reverse_delete(s,c):
"""Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and True/False for the check.
Example
For s = "abcde", c = "ae", the result should be ('bcd',False)
For s = "abcdef", c = "b" the result should be ('acdef',False)
For s = "abcdedcba", c = "ab", the result should be ('cdedc',True)
"""
s = ''.join([char for char in s if char not in c])
| reverse_delete | return (s,s[::-1] == s)
| def check(candidate):
assert candidate("abcde","ae") == ('bcd',False)
assert candidate("abcdef", "b") == ('acdef',False)
assert candidate("abcdedcba","ab") == ('cdedc',True)
assert candidate("dwik","w") == ('dik',False)
assert candidate("a","a") == ('',True)
assert candidate("abcdedcba","") == ('abcdedcba',True)
assert candidate("abcdedcba","v") == ('abcdedcba',True)
assert candidate("vabba","v") == ('abba',True)
assert candidate("mamma", "mia") == ("", True)
| 9 | new_lines |
def reverse_delete(s,c):
"""Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and True/False for the check.
Example
For s = "abcde", c = "ae", the result should be ('bcd',False)
For s = "abcdef", c = "b" the result should be ('acdef',False)
For s = "abcdedcba", c = "ab", the result should be ('cdedc',True)
"""
s = ''.join([char for char in s if char not in c])
# print('@@this is the line to split##')
return (s,s[::-1] == s)
|
HumanEval/113 |
def odd_count(lst):
"""Given a list of strings, where each string consists of only digits, return a list.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
>>> odd_count(['1234567'])
["the number of odd elements 4n the str4ng 4 of the 4nput."]
>>> odd_count(['3',"11111111"])
["the number of odd elements 1n the str1ng 1 of the 1nput.",
"the number of odd elements 8n the str8ng 8 of the 8nput."]
"""
res = []
for arr in lst:
| odd_count | n = sum(int(d)%2==1 for d in arr)
res.append("the number of odd elements " + str(n) + "n the str"+ str(n) +"ng "+ str(n) +" of the "+ str(n) +"nput.")
return res
| def check(candidate):
# Check some simple cases
assert candidate(['1234567']) == ["the number of odd elements 4n the str4ng 4 of the 4nput."], "Test 1"
assert candidate(['3',"11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."], "Test 2"
assert candidate(['271', '137', '314']) == [
'the number of odd elements 2n the str2ng 2 of the 2nput.',
'the number of odd elements 3n the str3ng 3 of the 3nput.',
'the number of odd elements 2n the str2ng 2 of the 2nput.'
]
# Check some edge cases that are easy to work out by hand.
assert True, "This prints if this assert fails 2 (also good for debugging!)"
| 9 | new_lines |
def odd_count(lst):
"""Given a list of strings, where each string consists of only digits, return a list.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
>>> odd_count(['1234567'])
["the number of odd elements 4n the str4ng 4 of the 4nput."]
>>> odd_count(['3',"11111111"])
["the number of odd elements 1n the str1ng 1 of the 1nput.",
"the number of odd elements 8n the str8ng 8 of the 8nput."]
"""
res = []
for arr in lst:
# print('@@this is the line to split##')
n = sum(int(d)%2==1 for d in arr)
res.append("the number of odd elements " + str(n) + "n the str"+ str(n) +"ng "+ str(n) +" of the "+ str(n) +"nput.")
return res
|
HumanEval/114 |
def minSubArraySum(nums):
"""
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum([2, 3, 4, 1, 2, 4]) == 1
minSubArraySum([-1, -2, -3]) == -6
"""
max_sum = 0
s = 0
for num in nums:
s += -num
if (s < 0):
| minSubArraySum | s = 0
max_sum = max(s, max_sum)
if max_sum == 0:
max_sum = max(-i for i in nums)
min_sum = -max_sum
return min_sum
| def check(candidate):
# Check some simple cases
assert candidate([2, 3, 4, 1, 2, 4]) == 1, "This prints if this assert fails 1 (good for debugging!)"
assert candidate([-1, -2, -3]) == -6
assert candidate([-1, -2, -3, 2, -10]) == -14
assert candidate([-9999999999999999]) == -9999999999999999
assert candidate([0, 10, 20, 1000000]) == 0
assert candidate([-1, -2, -3, 10, -5]) == -6
assert candidate([100, -1, -2, -3, 10, -5]) == -6
assert candidate([10, 11, 13, 8, 3, 4]) == 3
assert candidate([100, -33, 32, -1, 0, -2]) == -33
# Check some edge cases that are easy to work out by hand.
assert candidate([-10]) == -10, "This prints if this assert fails 2 (also good for debugging!)"
assert candidate([7]) == 7
assert candidate([1, -1]) == -1
| 9 | new_lines |
def minSubArraySum(nums):
"""
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum([2, 3, 4, 1, 2, 4]) == 1
minSubArraySum([-1, -2, -3]) == -6
"""
max_sum = 0
s = 0
for num in nums:
s += -num
if (s < 0):
# print('@@this is the line to split##')
s = 0
max_sum = max(s, max_sum)
if max_sum == 0:
max_sum = max(-i for i in nums)
min_sum = -max_sum
return min_sum
|
HumanEval/115 |
def max_fill(grid, capacity):
import math
"""
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it,
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Input:
grid : [[0,0,1,0], [0,1,0,0], [1,1,1,1]]
bucket_capacity : 1
Output: 6
Example 2:
Input:
grid : [[0,0,1,1], [0,0,0,0], [1,1,1,1], [0,1,1,1]]
bucket_capacity : 2
Output: 5
Example 3:
Input:
grid : [[0,0,0], [0,0,0]]
bucket_capacity : 5
Output: 0
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
"""
| max_fill | return sum([math.ceil(sum(arr)/capacity) for arr in grid])
| def check(candidate):
# Check some simple cases
assert True, "This prints if this assert fails 1 (good for debugging!)"
assert candidate([[0,0,1,0], [0,1,0,0], [1,1,1,1]], 1) == 6, "Error"
assert candidate([[0,0,1,1], [0,0,0,0], [1,1,1,1], [0,1,1,1]], 2) == 5, "Error"
assert candidate([[0,0,0], [0,0,0]], 5) == 0, "Error"
# Check some edge cases that are easy to work out by hand.
assert True, "This prints if this assert fails 2 (also good for debugging!)"
assert candidate([[1,1,1,1], [1,1,1,1]], 2) == 4, "Error"
assert candidate([[1,1,1,1], [1,1,1,1]], 9) == 2, "Error"
| 9 | new_lines | null |
HumanEval/116 |
def sort_array(arr):
"""
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
>>> sort_array([1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
>>> sort_array([-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
>>> sort_array([1, 0, 2, 3, 4]) [0, 1, 2, 3, 4]
"""
| sort_array | return sorted(sorted(arr), key=lambda x: bin(x)[2:].count('1'))
| def check(candidate):
# Check some simple cases
assert True, "This prints if this assert fails 1 (good for debugging!)"
assert candidate([1,5,2,3,4]) == [1, 2, 4, 3, 5]
assert candidate([-2,-3,-4,-5,-6]) == [-4, -2, -6, -5, -3]
assert candidate([1,0,2,3,4]) == [0, 1, 2, 4, 3]
assert candidate([]) == []
assert candidate([2,5,77,4,5,3,5,7,2,3,4]) == [2, 2, 4, 4, 3, 3, 5, 5, 5, 7, 77]
assert candidate([3,6,44,12,32,5]) == [32, 3, 5, 6, 12, 44]
assert candidate([2,4,8,16,32]) == [2, 4, 8, 16, 32]
assert candidate([2,4,8,16,32]) == [2, 4, 8, 16, 32]
# Check some edge cases that are easy to work out by hand.
assert True, "This prints if this assert fails 2 (also good for debugging!)"
| 9 | new_lines | null |
HumanEval/117 |
def select_words(s, n):
"""Given a string s and a natural number n, you have been tasked to implement
a function that returns a list of all words from string s that contain exactly
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty list.
Note: you may assume the input string contains only letters and spaces.
Examples:
select_words("Mary had a little lamb", 4) ==> ["little"]
select_words("Mary had a little lamb", 3) ==> ["Mary", "lamb"]
select_words("simple white space", 2) ==> []
select_words("Hello world", 4) ==> ["world"]
select_words("Uncle sam", 3) ==> ["Uncle"]
"""
result = []
for word in s.split():
n_consonants = 0
for i in range(0, len(word)):
if word[i].lower() not in ["a","e","i","o","u"]:
| select_words | n_consonants += 1
if n_consonants == n:
result.append(word)
return result
| def check(candidate):
# Check some simple cases
assert candidate("Mary had a little lamb", 4) == ["little"], "First test error: " + str(candidate("Mary had a little lamb", 4))
assert candidate("Mary had a little lamb", 3) == ["Mary", "lamb"], "Second test error: " + str(candidate("Mary had a little lamb", 3))
assert candidate("simple white space", 2) == [], "Third test error: " + str(candidate("simple white space", 2))
assert candidate("Hello world", 4) == ["world"], "Fourth test error: " + str(candidate("Hello world", 4))
assert candidate("Uncle sam", 3) == ["Uncle"], "Fifth test error: " + str(candidate("Uncle sam", 3))
# Check some edge cases that are easy to work out by hand.
assert candidate("", 4) == [], "1st edge test error: " + str(candidate("", 4))
assert candidate("a b c d e f", 1) == ["b", "c", "d", "f"], "2nd edge test error: " + str(candidate("a b c d e f", 1))
| 9 | new_lines |
def select_words(s, n):
"""Given a string s and a natural number n, you have been tasked to implement
a function that returns a list of all words from string s that contain exactly
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty list.
Note: you may assume the input string contains only letters and spaces.
Examples:
select_words("Mary had a little lamb", 4) ==> ["little"]
select_words("Mary had a little lamb", 3) ==> ["Mary", "lamb"]
select_words("simple white space", 2) ==> []
select_words("Hello world", 4) ==> ["world"]
select_words("Uncle sam", 3) ==> ["Uncle"]
"""
result = []
for word in s.split():
n_consonants = 0
for i in range(0, len(word)):
if word[i].lower() not in ["a","e","i","o","u"]:
# print('@@this is the line to split##')
n_consonants += 1
if n_consonants == n:
result.append(word)
return result
|
HumanEval/118 |
def get_closest_vowel(word):
"""You are given a word. Your task is to find the closest vowel that stands between
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition.
You may assume that the given string contains English letter only.
Example:
get_closest_vowel("yogurt") ==> "u"
get_closest_vowel("FULL") ==> "U"
get_closest_vowel("quick") ==> ""
get_closest_vowel("ab") ==> ""
"""
if len(word) < 3:
return ""
vowels = {"a", "e", "i", "o", "u", "A", "E", 'O', 'U', 'I'}
| get_closest_vowel | for i in range(len(word)-2, 0, -1):
if word[i] in vowels:
if (word[i+1] not in vowels) and (word[i-1] not in vowels):
return word[i]
return ""
| def check(candidate):
# Check some simple cases
assert candidate("yogurt") == "u"
assert candidate("full") == "u"
assert candidate("easy") == ""
assert candidate("eAsy") == ""
assert candidate("ali") == ""
assert candidate("bad") == "a"
assert candidate("most") == "o"
assert candidate("ab") == ""
assert candidate("ba") == ""
assert candidate("quick") == ""
assert candidate("anime") == "i"
assert candidate("Asia") == ""
assert candidate("Above") == "o"
# Check some edge cases that are easy to work out by hand.
assert True
| 9 | new_lines |
def get_closest_vowel(word):
"""You are given a word. Your task is to find the closest vowel that stands between
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition.
You may assume that the given string contains English letter only.
Example:
get_closest_vowel("yogurt") ==> "u"
get_closest_vowel("FULL") ==> "U"
get_closest_vowel("quick") ==> ""
get_closest_vowel("ab") ==> ""
"""
if len(word) < 3:
return ""
vowels = {"a", "e", "i", "o", "u", "A", "E", 'O', 'U', 'I'}
# print('@@this is the line to split##')
for i in range(len(word)-2, 0, -1):
if word[i] in vowels:
if (word[i+1] not in vowels) and (word[i-1] not in vowels):
return word[i]
return ""
|
HumanEval/119 |
def match_parens(lst):
'''
You are given a list of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
match_parens(['()(', ')']) == 'Yes'
match_parens([')', ')']) == 'No'
'''
def check(s):
val = 0
for i in s:
if i == '(':
val = val + 1
else:
val = val - 1
| match_parens | if val < 0:
return False
return True if val == 0 else False
S1 = lst[0] + lst[1]
S2 = lst[1] + lst[0]
return 'Yes' if check(S1) or check(S2) else 'No'
| def check(candidate):
# Check some simple cases
assert candidate(['()(', ')']) == 'Yes'
assert candidate([')', ')']) == 'No'
assert candidate(['(()(())', '())())']) == 'No'
assert candidate([')())', '(()()(']) == 'Yes'
assert candidate(['(())))', '(()())((']) == 'Yes'
assert candidate(['()', '())']) == 'No'
assert candidate(['(()(', '()))()']) == 'Yes'
assert candidate(['((((', '((())']) == 'No'
assert candidate([')(()', '(()(']) == 'No'
assert candidate([')(', ')(']) == 'No'
# Check some edge cases that are easy to work out by hand.
assert candidate(['(', ')']) == 'Yes'
assert candidate([')', '(']) == 'Yes'
| 9 | new_lines |
def match_parens(lst):
'''
You are given a list of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
match_parens(['()(', ')']) == 'Yes'
match_parens([')', ')']) == 'No'
'''
def check(s):
val = 0
for i in s:
if i == '(':
val = val + 1
else:
val = val - 1
# print('@@this is the line to split##')
if val < 0:
return False
return True if val == 0 else False
S1 = lst[0] + lst[1]
S2 = lst[1] + lst[0]
return 'Yes' if check(S1) or check(S2) else 'No'
|
HumanEval/120 |
def maximum(arr, k):
"""
Given an array arr of integers and a positive integer k, return a sorted list
of length k with the maximum k numbers in arr.
Example 1:
Input: arr = [-3, -4, 5], k = 3
Output: [-4, -3, 5]
Example 2:
Input: arr = [4, -4, 4], k = 2
Output: [4, 4]
Example 3:
Input: arr = [-3, 2, 1, 2, -1, -2, 1], k = 1
Output: [2]
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
"""
if k == 0:
return []
| maximum | arr.sort()
ans = arr[-k:]
return ans
| def check(candidate):
# Check some simple cases
assert candidate([-3, -4, 5], 3) == [-4, -3, 5]
assert candidate([4, -4, 4], 2) == [4, 4]
assert candidate([-3, 2, 1, 2, -1, -2, 1], 1) == [2]
assert candidate([123, -123, 20, 0 , 1, 2, -3], 3) == [2, 20, 123]
assert candidate([-123, 20, 0 , 1, 2, -3], 4) == [0, 1, 2, 20]
assert candidate([5, 15, 0, 3, -13, -8, 0], 7) == [-13, -8, 0, 0, 3, 5, 15]
assert candidate([-1, 0, 2, 5, 3, -10], 2) == [3, 5]
assert candidate([1, 0, 5, -7], 1) == [5]
assert candidate([4, -4], 2) == [-4, 4]
assert candidate([-10, 10], 2) == [-10, 10]
# Check some edge cases that are easy to work out by hand.
assert candidate([1, 2, 3, -23, 243, -400, 0], 0) == []
| 9 | new_lines |
def maximum(arr, k):
"""
Given an array arr of integers and a positive integer k, return a sorted list
of length k with the maximum k numbers in arr.
Example 1:
Input: arr = [-3, -4, 5], k = 3
Output: [-4, -3, 5]
Example 2:
Input: arr = [4, -4, 4], k = 2
Output: [4, 4]
Example 3:
Input: arr = [-3, 2, 1, 2, -1, -2, 1], k = 1
Output: [2]
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
"""
if k == 0:
return []
# print('@@this is the line to split##')
arr.sort()
ans = arr[-k:]
return ans
|
HumanEval/121 |
def solution(lst):
"""Given a non-empty list of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution([5, 8, 7, 1]) ==> 12
solution([3, 3, 3, 3, 3]) ==> 9
solution([30, 13, 24, 321]) ==>0
"""
| solution | return sum([x for idx, x in enumerate(lst) if idx%2==0 and x%2==1])
| def check(candidate):
# Check some simple cases
assert candidate([5, 8, 7, 1]) == 12
assert candidate([3, 3, 3, 3, 3]) == 9
assert candidate([30, 13, 24, 321]) == 0
assert candidate([5, 9]) == 5
assert candidate([2, 4, 8]) == 0
assert candidate([30, 13, 23, 32]) == 23
assert candidate([3, 13, 2, 9]) == 3
# Check some edge cases that are easy to work out by hand.
| 9 | new_lines | null |
HumanEval/122 |
def add_elements(arr, k):
"""
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Input: arr = [111,21,3,4000,5,6,7,8,9], k = 4
Output: 24 # sum of 21 + 3
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
"""
| add_elements | return sum(elem for elem in arr[:k] if len(str(elem)) <= 2)
| def check(candidate):
# Check some simple cases
assert candidate([1,-2,-3,41,57,76,87,88,99], 3) == -4
assert candidate([111,121,3,4000,5,6], 2) == 0
assert candidate([11,21,3,90,5,6,7,8,9], 4) == 125
assert candidate([111,21,3,4000,5,6,7,8,9], 4) == 24, "This prints if this assert fails 1 (good for debugging!)"
# Check some edge cases that are easy to work out by hand.
assert candidate([1], 1) == 1, "This prints if this assert fails 2 (also good for debugging!)"
| 9 | new_lines | null |
HumanEval/123 |
def get_odd_collatz(n):
"""
Given a positive integer n, return a sorted list that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the
previous term as follows: if the previous term is even, the next term is one half of
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note:
1. Collatz(1) is [1].
2. returned list sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
"""
if n%2==0:
odd_collatz = []
else:
odd_collatz = [n]
while n > 1:
if n % 2 == 0:
n = n/2
| get_odd_collatz | else:
n = n*3 + 1
if n%2 == 1:
odd_collatz.append(int(n))
return sorted(odd_collatz)
| def check(candidate):
# Check some simple cases
assert candidate(14) == [1, 5, 7, 11, 13, 17]
assert candidate(5) == [1, 5]
assert candidate(12) == [1, 3, 5], "This prints if this assert fails 1 (good for debugging!)"
# Check some edge cases that are easy to work out by hand.
assert candidate(1) == [1], "This prints if this assert fails 2 (also good for debugging!)"
| 9 | new_lines |
def get_odd_collatz(n):
"""
Given a positive integer n, return a sorted list that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the
previous term as follows: if the previous term is even, the next term is one half of
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note:
1. Collatz(1) is [1].
2. returned list sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
"""
if n%2==0:
odd_collatz = []
else:
odd_collatz = [n]
while n > 1:
if n % 2 == 0:
n = n/2
# print('@@this is the line to split##')
else:
n = n*3 + 1
if n%2 == 1:
odd_collatz.append(int(n))
return sorted(odd_collatz)
|
HumanEval/124 |
def valid_date(date):
"""You have to write a function which validates a given date string and
returns True if the date is valid otherwise False.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
for example:
valid_date('03-11-2000') => True
valid_date('15-01-2012') => False
valid_date('04-0-2040') => False
valid_date('06-04-2020') => True
valid_date('06/04/2020') => False
"""
try:
date = date.strip()
month, day, year = date.split('-')
month, day, year = int(month), int(day), int(year)
if month < 1 or month > 12:
return False
if month in [1,3,5,7,8,10,12] and day < 1 or day > 31:
return False
| valid_date | if month in [4,6,9,11] and day < 1 or day > 30:
return False
if month == 2 and day < 1 or day > 29:
return False
except:
return False
return True
| def check(candidate):
# Check some simple cases
assert candidate('03-11-2000') == True
assert candidate('15-01-2012') == False
assert candidate('04-0-2040') == False
assert candidate('06-04-2020') == True
assert candidate('01-01-2007') == True
assert candidate('03-32-2011') == False
assert candidate('') == False
assert candidate('04-31-3000') == False
assert candidate('06-06-2005') == True
assert candidate('21-31-2000') == False
assert candidate('04-12-2003') == True
assert candidate('04122003') == False
assert candidate('20030412') == False
assert candidate('2003-04') == False
assert candidate('2003-04-12') == False
assert candidate('04-2003') == False
| 9 | new_lines |
def valid_date(date):
"""You have to write a function which validates a given date string and
returns True if the date is valid otherwise False.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
for example:
valid_date('03-11-2000') => True
valid_date('15-01-2012') => False
valid_date('04-0-2040') => False
valid_date('06-04-2020') => True
valid_date('06/04/2020') => False
"""
try:
date = date.strip()
month, day, year = date.split('-')
month, day, year = int(month), int(day), int(year)
if month < 1 or month > 12:
return False
if month in [1,3,5,7,8,10,12] and day < 1 or day > 31:
return False
# print('@@this is the line to split##')
if month in [4,6,9,11] and day < 1 or day > 30:
return False
if month == 2 and day < 1 or day > 29:
return False
except:
return False
return True
|
HumanEval/125 |
def split_words(txt):
'''
Given a string of words, return a list of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
Examples
split_words("Hello world!") β ["Hello", "world!"]
split_words("Hello,world!") β ["Hello", "world!"]
split_words("abcdef") == 3
'''
if " " in txt:
return txt.split()
elif "," in txt:
| split_words | return txt.replace(',',' ').split()
else:
return len([i for i in txt if i.islower() and ord(i)%2 == 0])
| def check(candidate):
assert candidate("Hello world!") == ["Hello","world!"]
assert candidate("Hello,world!") == ["Hello","world!"]
assert candidate("Hello world,!") == ["Hello","world,!"]
assert candidate("Hello,Hello,world !") == ["Hello,Hello,world","!"]
assert candidate("abcdef") == 3
assert candidate("aaabb") == 2
assert candidate("aaaBb") == 1
assert candidate("") == 0
| 9 | new_lines |
def split_words(txt):
'''
Given a string of words, return a list of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
Examples
split_words("Hello world!") β ["Hello", "world!"]
split_words("Hello,world!") β ["Hello", "world!"]
split_words("abcdef") == 3
'''
if " " in txt:
return txt.split()
elif "," in txt:
# print('@@this is the line to split##')
return txt.replace(',',' ').split()
else:
return len([i for i in txt if i.islower() and ord(i)%2 == 0])
|
HumanEval/126 |
def is_sorted(lst):
'''
Given a list of numbers, return whether or not they are sorted
in ascending order. If list has more than 1 duplicate of the same
number, return False. Assume no negative numbers and only integers.
Examples
is_sorted([5]) β True
is_sorted([1, 2, 3, 4, 5]) β True
is_sorted([1, 3, 2, 4, 5]) β False
is_sorted([1, 2, 3, 4, 5, 6]) β True
is_sorted([1, 2, 3, 4, 5, 6, 7]) β True
is_sorted([1, 3, 2, 4, 5, 6, 7]) β False
is_sorted([1, 2, 2, 3, 3, 4]) β True
is_sorted([1, 2, 2, 2, 3, 4]) β False
'''
count_digit = dict([(i, 0) for i in lst])
for i in lst:
count_digit[i]+=1
if any(count_digit[i] > 2 for i in lst):
return False
| is_sorted | if all(lst[i-1] <= lst[i] for i in range(1, len(lst))):
return True
else:
return False
| def check(candidate):
# Check some simple cases
assert candidate([5]) == True
assert candidate([1, 2, 3, 4, 5]) == True
assert candidate([1, 3, 2, 4, 5]) == False
assert candidate([1, 2, 3, 4, 5, 6]) == True
assert candidate([1, 2, 3, 4, 5, 6, 7]) == True
assert candidate([1, 3, 2, 4, 5, 6, 7]) == False, "This prints if this assert fails 1 (good for debugging!)"
assert candidate([]) == True, "This prints if this assert fails 2 (good for debugging!)"
assert candidate([1]) == True, "This prints if this assert fails 3 (good for debugging!)"
assert candidate([3, 2, 1]) == False, "This prints if this assert fails 4 (good for debugging!)"
# Check some edge cases that are easy to work out by hand.
assert candidate([1, 2, 2, 2, 3, 4]) == False, "This prints if this assert fails 5 (good for debugging!)"
assert candidate([1, 2, 3, 3, 3, 4]) == False, "This prints if this assert fails 6 (good for debugging!)"
assert candidate([1, 2, 2, 3, 3, 4]) == True, "This prints if this assert fails 7 (good for debugging!)"
assert candidate([1, 2, 3, 4]) == True, "This prints if this assert fails 8 (good for debugging!)"
| 9 | new_lines |
def is_sorted(lst):
'''
Given a list of numbers, return whether or not they are sorted
in ascending order. If list has more than 1 duplicate of the same
number, return False. Assume no negative numbers and only integers.
Examples
is_sorted([5]) β True
is_sorted([1, 2, 3, 4, 5]) β True
is_sorted([1, 3, 2, 4, 5]) β False
is_sorted([1, 2, 3, 4, 5, 6]) β True
is_sorted([1, 2, 3, 4, 5, 6, 7]) β True
is_sorted([1, 3, 2, 4, 5, 6, 7]) β False
is_sorted([1, 2, 2, 3, 3, 4]) β True
is_sorted([1, 2, 2, 2, 3, 4]) β False
'''
count_digit = dict([(i, 0) for i in lst])
for i in lst:
count_digit[i]+=1
if any(count_digit[i] > 2 for i in lst):
return False
# print('@@this is the line to split##')
if all(lst[i-1] <= lst[i] for i in range(1, len(lst))):
return True
else:
return False
|
HumanEval/127 |
def intersection(interval1, interval2):
"""You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection((1, 2), (2, 3)) ==> "NO"
intersection((-1, 1), (0, 4)) ==> "NO"
intersection((-3, -1), (-5, 5)) ==> "YES"
"""
def is_prime(num):
if num == 1 or num == 0:
return False
if num == 2:
return True
for i in range(2, num):
if num%i == 0:
return False
| intersection | return True
l = max(interval1[0], interval2[0])
r = min(interval1[1], interval2[1])
length = r - l
if length > 0 and is_prime(length):
return "YES"
return "NO"
| def check(candidate):
# Check some simple cases
assert candidate((1, 2), (2, 3)) == "NO"
assert candidate((-1, 1), (0, 4)) == "NO"
assert candidate((-3, -1), (-5, 5)) == "YES"
assert candidate((-2, 2), (-4, 0)) == "YES"
# Check some edge cases that are easy to work out by hand.
assert candidate((-11, 2), (-1, -1)) == "NO"
assert candidate((1, 2), (3, 5)) == "NO"
assert candidate((1, 2), (1, 2)) == "NO"
assert candidate((-2, -2), (-3, -2)) == "NO"
| 9 | new_lines |
def intersection(interval1, interval2):
"""You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection((1, 2), (2, 3)) ==> "NO"
intersection((-1, 1), (0, 4)) ==> "NO"
intersection((-3, -1), (-5, 5)) ==> "YES"
"""
def is_prime(num):
if num == 1 or num == 0:
return False
if num == 2:
return True
for i in range(2, num):
if num%i == 0:
return False
# print('@@this is the line to split##')
return True
l = max(interval1[0], interval2[0])
r = min(interval1[1], interval2[1])
length = r - l
if length > 0 and is_prime(length):
return "YES"
return "NO"
|
HumanEval/128 |
def prod_signs(arr):
"""
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return None for empty arr.
Example:
>>> prod_signs([1, 2, 2, -4]) == -9
>>> prod_signs([0, 1]) == 0
>>> prod_signs([]) == None
"""
if not arr: return None
| prod_signs | prod = 0 if 0 in arr else (-1) ** len(list(filter(lambda x: x < 0, arr)))
return prod * sum([abs(i) for i in arr])
| def check(candidate):
# Check some simple cases
assert True, "This prints if this assert fails 1 (good for debugging!)"
assert candidate([1, 2, 2, -4]) == -9
assert candidate([0, 1]) == 0
assert candidate([1, 1, 1, 2, 3, -1, 1]) == -10
assert candidate([]) == None
assert candidate([2, 4,1, 2, -1, -1, 9]) == 20
assert candidate([-1, 1, -1, 1]) == 4
assert candidate([-1, 1, 1, 1]) == -4
assert candidate([-1, 1, 1, 0]) == 0
# Check some edge cases that are easy to work out by hand.
assert True, "This prints if this assert fails 2 (also good for debugging!)"
| 9 | new_lines |
def prod_signs(arr):
"""
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return None for empty arr.
Example:
>>> prod_signs([1, 2, 2, -4]) == -9
>>> prod_signs([0, 1]) == 0
>>> prod_signs([]) == None
"""
if not arr: return None
# print('@@this is the line to split##')
prod = 0 if 0 in arr else (-1) ** len(list(filter(lambda x: x < 0, arr)))
return prod * sum([abs(i) for i in arr])
|
HumanEval/129 |
def minPath(grid, k):
"""
Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered lists of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered list of the values on the cells that the minimum path go through.
Examples:
Input: grid = [ [1,2,3], [4,5,6], [7,8,9]], k = 3
Output: [1, 2, 1]
Input: grid = [ [5,9,3], [4,1,6], [7,8,2]], k = 1
Output: [1]
"""
n = len(grid)
val = n * n + 1
for i in range(n):
for j in range(n):
if grid[i][j] == 1:
temp = []
if i != 0:
temp.append(grid[i - 1][j])
if j != 0:
temp.append(grid[i][j - 1])
if i != n - 1:
| minPath | temp.append(grid[i + 1][j])
if j != n - 1:
temp.append(grid[i][j + 1])
val = min(temp)
ans = []
for i in range(k):
if i % 2 == 0:
ans.append(1)
else:
ans.append(val)
return ans
| def check(candidate):
# Check some simple cases
print
assert candidate([[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3) == [1, 2, 1]
assert candidate([[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1) == [1]
assert candidate([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4) == [1, 2, 1, 2]
assert candidate([[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7) == [1, 10, 1, 10, 1, 10, 1]
assert candidate([[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5) == [1, 7, 1, 7, 1]
assert candidate([[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9) == [1, 6, 1, 6, 1, 6, 1, 6, 1]
assert candidate([[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12) == [1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]
assert candidate([[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8) == [1, 3, 1, 3, 1, 3, 1, 3]
assert candidate([[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8) == [1, 5, 1, 5, 1, 5, 1, 5]
# Check some edge cases that are easy to work out by hand.
assert candidate([[1, 2], [3, 4]], 10) == [1, 2, 1, 2, 1, 2, 1, 2, 1, 2]
assert candidate([[1, 3], [3, 2]], 10) == [1, 3, 1, 3, 1, 3, 1, 3, 1, 3]
| 9 | new_lines |
def minPath(grid, k):
"""
Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered lists of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered list of the values on the cells that the minimum path go through.
Examples:
Input: grid = [ [1,2,3], [4,5,6], [7,8,9]], k = 3
Output: [1, 2, 1]
Input: grid = [ [5,9,3], [4,1,6], [7,8,2]], k = 1
Output: [1]
"""
n = len(grid)
val = n * n + 1
for i in range(n):
for j in range(n):
if grid[i][j] == 1:
temp = []
if i != 0:
temp.append(grid[i - 1][j])
if j != 0:
temp.append(grid[i][j - 1])
if i != n - 1:
# print('@@this is the line to split##')
temp.append(grid[i + 1][j])
if j != n - 1:
temp.append(grid[i][j + 1])
val = min(temp)
ans = []
for i in range(k):
if i % 2 == 0:
ans.append(1)
else:
ans.append(val)
return ans
|
HumanEval/130 |
def tri(n):
"""Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8
You are given a non-negative integer number n, you have to a return a list of the
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(3) = [1, 3, 2, 8]
"""
if n == 0:
return [1]
my_tri = [1, 3]
for i in range(2, n + 1):
| tri | if i % 2 == 0:
my_tri.append(i / 2 + 1)
else:
my_tri.append(my_tri[i - 1] + my_tri[i - 2] + (i + 3) / 2)
return my_tri
| def check(candidate):
# Check some simple cases
assert candidate(3) == [1, 3, 2.0, 8.0]
assert candidate(4) == [1, 3, 2.0, 8.0, 3.0]
assert candidate(5) == [1, 3, 2.0, 8.0, 3.0, 15.0]
assert candidate(6) == [1, 3, 2.0, 8.0, 3.0, 15.0, 4.0]
assert candidate(7) == [1, 3, 2.0, 8.0, 3.0, 15.0, 4.0, 24.0]
assert candidate(8) == [1, 3, 2.0, 8.0, 3.0, 15.0, 4.0, 24.0, 5.0]
assert candidate(9) == [1, 3, 2.0, 8.0, 3.0, 15.0, 4.0, 24.0, 5.0, 35.0]
assert candidate(20) == [1, 3, 2.0, 8.0, 3.0, 15.0, 4.0, 24.0, 5.0, 35.0, 6.0, 48.0, 7.0, 63.0, 8.0, 80.0, 9.0, 99.0, 10.0, 120.0, 11.0]
# Check some edge cases that are easy to work out by hand.
assert candidate(0) == [1]
assert candidate(1) == [1, 3]
| 9 | new_lines |
def tri(n):
"""Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8
You are given a non-negative integer number n, you have to a return a list of the
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(3) = [1, 3, 2, 8]
"""
if n == 0:
return [1]
my_tri = [1, 3]
for i in range(2, n + 1):
# print('@@this is the line to split##')
if i % 2 == 0:
my_tri.append(i / 2 + 1)
else:
my_tri.append(my_tri[i - 1] + my_tri[i - 2] + (i + 3) / 2)
return my_tri
|
HumanEval/131 |
def digits(n):
"""Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(1) == 1
digits(4) == 0
digits(235) == 15
"""
product = 1
odd_count = 0
for digit in str(n):
int_digit = int(digit)
if int_digit%2 == 1:
| digits | product= product*int_digit
odd_count+=1
if odd_count ==0:
return 0
else:
return product
| def check(candidate):
# Check some simple cases
assert candidate(5) == 5
assert candidate(54) == 5
assert candidate(120) ==1
assert candidate(5014) == 5
assert candidate(98765) == 315
assert candidate(5576543) == 2625
# Check some edge cases that are easy to work out by hand.
assert candidate(2468) == 0
| 9 | new_lines |
def digits(n):
"""Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(1) == 1
digits(4) == 0
digits(235) == 15
"""
product = 1
odd_count = 0
for digit in str(n):
int_digit = int(digit)
if int_digit%2 == 1:
# print('@@this is the line to split##')
product= product*int_digit
odd_count+=1
if odd_count ==0:
return 0
else:
return product
|