File size: 2,664 Bytes
87ca21a b156158 b06d231 b156158 b06d231 b156158 b06d231 b156158 dd71a21 b06d231 dd71a21 b156158 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 |
---
license: apache-2.0
---
# Dataset Card for Dataset Name
## Dataset Description
- **Repository:** https://github.com/amazon-science/recode/tree/main
- **Paper:** https://arxiv.org/abs/2212.10264
### Dataset Summary
The Recode benchmark proposes to apply code and natural language transformations to code-generation benchmarks to evaluate the robustness of code-generation models.
This dataset contains the perturbed version of HumanEval that they released.
It was automatically generated from the [HumanEval](https://huggingface.co./datasets/openai_humaneval) dataset.
### Subsets
There are four transformation categories that form the subsets of this dataset: `func_name`, `nlaugmenter`, `natgen` and `format`.
### Languages
The programming problems are written in Python and contains docstrings and comments in English.
## Dataset Structure
### Data Instances
[More Information Needed]
### Data Fields
- `task_id`: ID of the original HumanEval example
- `prompt`: the perturbed prompt
- `entry_point`: entry point for test
- `canonical_solution`: solution for the problem in the `prompt`
- `test`: contains function to test generated code for correctness
- `seed`: seed of the perturbed prompt
- `perturbation_name`: name of the perturbation
- `partial`: partial solution to the problem. This field is only present for transformation categories that affect a partial solution: `natgen` and `format`.
### Data Splits
The dataset only has a test split.
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
```
@article{wang2022recode,
title={ReCode: Robustness Evaluation of Code Generation Models},
author={Wang, Shiqi and Li, Zheng and Qian, Haifeng and Yang, Chenghao and Wang, Zijian and Shang, Mingyue and Kumar, Varun and Tan, Samson and Ray, Baishakhi and Bhatia, Parminder and others},
journal={arXiv preprint arXiv:2212.10264},
year={2022}
}
```
### Contributions
[More Information Needed] |