Datasets:

Modalities:
Text
Formats:
json
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
CRAG / crag_sampler /utils.py
jchevallard's picture
feat: remove alt_ans field, as it creats too many problems
ec30f7a
import os
import hashlib
import bz2
import json
import subprocess
from typing import Dict, List, Optional, Any
import pandas as pd
import numpy as np
from multiprocessing import Pool, cpu_count
from sklearn.model_selection import StratifiedKFold
def get_cache_path(file_path: str, required_fields: List[str]) -> str:
"""
Generate a unique cache file path based on input file and fields.
Args:
file_path: Path to the input JSONL file
required_fields: List of field names to extract
Returns:
Path to the cache file
"""
# Create a unique hash based on the file path and fields
fields_str = ",".join(sorted(required_fields))
hash_input = f"{fields_str}"
hash_str = hashlib.md5(hash_input.encode()).hexdigest()[:10]
# Get the directory of the input file
base_dir = os.path.dirname(file_path)
# Get filename from file path
file_name = os.path.basename(file_path).split(".")[0]
cache_name = f"{file_name}_cache_{hash_str}.parquet"
return os.path.join(base_dir, cache_name)
def read_jsonl_fields_fast(
file_path: str, required_fields: List[str], use_cache: bool = True
) -> pd.DataFrame:
"""
Quickly extract specific fields from a compressed JSONL file using string operations.
Results are cached in parquet format for faster subsequent reads.
Args:
file_path: Path to the JSONL file (can be bz2 compressed)
required_fields: List of field names to extract from each JSON object
use_cache: Whether to use/create cache file (default: True)
Returns:
DataFrame containing the requested fields
"""
cache_path = get_cache_path(file_path, required_fields)
print(f"Cache path: {cache_path}")
# Try to load from cache first
if use_cache and os.path.exists(cache_path):
return pd.read_parquet(cache_path)
# If no cache exists, process the file
records = []
patterns = [f'"{field}":' for field in required_fields]
with bz2.open(file_path, "rt") as file:
for line in file:
if not line.strip():
continue
result = {}
for field, pattern in zip(required_fields, patterns):
try:
# Find the field in the line
start_idx = line.find(pattern)
if start_idx == -1:
continue
# Move to the start of the value
start_idx += len(pattern)
while start_idx < len(line) and line[start_idx].isspace():
start_idx += 1
# Handle different value types
if start_idx >= len(line):
continue
if line[start_idx] == '"':
# String value
start_idx += 1
end_idx = line.find('"', start_idx)
value = line[start_idx:end_idx]
elif line[start_idx] == "{" or line[start_idx] == "[":
# Skip nested objects/arrays
continue
else:
# Number, boolean, or null
end_idx = line.find(",", start_idx)
if end_idx == -1:
end_idx = line.find("}", start_idx)
value = line[start_idx:end_idx].strip()
# Convert to appropriate type
if value == "true":
value = True
elif value == "false":
value = False
elif value == "null":
value = None
else:
try:
value = float(value) if "." in value else int(value)
except ValueError:
continue
result[field] = value
except Exception:
continue
if result:
records.append(result)
# Convert to DataFrame
df = pd.DataFrame.from_records(records)
# Convert columns to appropriate types
for col in df.columns:
# If the column contains any strings, convert the whole column to strings
if (
df[col].dtype == object
and df[col].apply(lambda x: isinstance(x, str)).any()
):
df[col] = df[col].astype(str)
# You can add more type conversions here if needed
# Save cache if enabled
if use_cache:
df.to_parquet(cache_path)
return df
def process_answer_types(df: pd.DataFrame) -> pd.DataFrame:
"""
Process the answer field to create a new answer_type field.
Args:
df: Input DataFrame with 'answer' column
Returns:
DataFrame with new 'answer_type' column
"""
# Create a copy to avoid modifying the original
df = df.copy()
# Print unique answers to debug
print("Unique answers in dataset:")
print(df["answer"].unique())
# Create answer_type column with case-insensitive matching
conditions = [
df["answer"].str.lower() == "invalid question",
df["answer"].str.lower() == "i don't know", # Try exact match
]
choices = ["invalid", "no_answer"]
df["answer_type"] = np.select(conditions, choices, default="valid")
# Print distribution to verify
print("\nAnswer type distribution:")
print(df["answer_type"].value_counts())
return df
def create_stratified_subsets(
df: pd.DataFrame,
n_subsets: int,
stratify_columns: List[str] = [
"domain",
"answer_type",
"question_type",
"static_or_dynamic",
],
output_path: str = "subsets.json",
force_compute: bool = False,
) -> Dict[str, Any]:
"""
Create stratified subsets of the dataset and save them to a JSON file.
Each subset gets a unique ID based on its indices.
Args:
df: Input DataFrame
n_subsets: Number of subsets to create
stratify_columns: Columns to use for stratification
output_path: Path to save/load the JSON output
force_compute: If True, always compute subsets even if file exists
Returns:
Dictionary containing the subsets information
"""
# Check if file exists and we can use it
if not force_compute and os.path.exists(output_path):
try:
with open(output_path, "r") as f:
subsets_data = json.load(f)
# Validate the loaded data has the expected structure
if (
subsets_data.get("metadata", {}).get("n_subsets") == n_subsets
and subsets_data.get("metadata", {}).get("stratify_columns")
== stratify_columns
):
print(f"Loading existing subsets from {output_path}")
return subsets_data
else:
print("Existing subsets file has different parameters, recomputing...")
except Exception as e:
print(f"Error loading existing subsets file: {e}, recomputing...")
# Create a combined category for stratification
df["strat_category"] = df[stratify_columns].astype(str).agg("_".join, axis=1)
# Initialize the subsetter
skf = StratifiedKFold(n_splits=n_subsets, shuffle=True, random_state=42)
# Create subsets
subsets_info = []
for subset_idx, (_, subset_indices) in enumerate(
skf.split(df, df["strat_category"])
):
# Sort indices for consistent hashing
sorted_indices = sorted(subset_indices.tolist())
# Create a deterministic ID from the indices
subset_id = hashlib.md5(str(sorted_indices).encode()).hexdigest()[:8]
# Calculate statistics for this subset
stats = {}
subset_df = df.iloc[subset_indices]
for col in stratify_columns:
stats[col] = subset_df[col].value_counts().to_dict()
subsets_info.append(
{
"index": subset_idx,
"statistics": stats,
"indices": sorted_indices,
"size": len(subset_indices),
}
)
# Add global statistics
global_stats = {}
for col in stratify_columns:
global_stats[col] = df[col].value_counts().to_dict()
output_data = {
"metadata": {
"n_subsets": n_subsets,
"total_samples": len(df),
"stratify_columns": stratify_columns,
"global_statistics": global_stats,
},
"subsets": subsets_info,
}
# Save to JSON
with open(output_path, "w") as f:
json.dump(output_data, f, indent=2)
return output_data
def write_subset(
input_file: str, indices: List[int], output_file: str, compress: bool = True
) -> None:
"""Write a single subset to a file using awk and jq."""
indices_set = set(i + 1 for i in indices)
nr_conditions = " || ".join(f"NR == {i}" for i in sorted(indices_set))
# Add alt_ans field handling to awk script
awk_script = f"""
{{
if ({nr_conditions}) {{
print
}}
}}"""
if input_file.endswith(".bz2"):
# Use awk to filter lines and jq to remove "alt_ans"
if compress:
cmd = f"bzcat '{input_file}' | awk '{awk_script}' | jq 'del(.alt_ans)' | bzip2 > '{output_file}'"
else:
cmd = f"bzcat '{input_file}' | awk '{awk_script}' | jq 'del(.alt_ans)' > '{output_file}'"
else:
if compress:
cmd = f"awk '{awk_script}' '{input_file}' | jq 'del(.alt_ans)' | bzip2 > '{output_file}'"
else:
cmd = f"awk '{awk_script}' '{input_file}' | jq 'del(.alt_ans)' > '{output_file}'"
print(f"Process {os.getpid()} - Starting subset to {output_file}")
try:
result = subprocess.run(
cmd,
shell=True,
check=True,
stderr=subprocess.PIPE,
stdout=subprocess.PIPE,
text=True,
)
print(f"Process {os.getpid()} - Finished subset to {output_file}")
if os.path.exists(output_file) and os.path.getsize(output_file) > 0:
print(
f"Process {os.getpid()} - Successfully created {output_file} "
f"({os.path.getsize(output_file)} bytes)"
)
else:
raise Exception(f"Output file {output_file} is empty or doesn't exist")
except subprocess.CalledProcessError as e:
print(f"Error executing command: {e.stderr}")
print(f"Command output: {e.stdout}")
raise
except Exception as e:
print(f"Error: {str(e)}")
raise
def subset_jsonl_file(
input_file: str,
subsets_file: str,
output_dir: Optional[str] = None,
compress: bool = True,
n_processes: Optional[int] = None,
overwrite: bool = False,
) -> None:
"""
subset a large JSONL file into multiple files using sed for maximum performance.
Args:
input_file: Path to input JSONL file (can be bz2 compressed)
subsets_file: Path to JSON file containing subset indices
output_dir: Directory to save subset files (defaults to input file directory)
compress: Whether to compress output files with bz2
n_processes: Number of processes to use (defaults to min(n_subsets, cpu_count))
overwrite: If False, skip existing output files (default: False)
"""
# Load subsets information
with open(subsets_file, "r") as f:
subsets_data = json.load(f)
# Determine optimal number of processes
n_subsets = len(subsets_data["subsets"])
if n_processes is None:
n_processes = min(n_subsets, cpu_count())
if output_dir is None:
output_dir = os.path.dirname(input_file)
os.makedirs(output_dir, exist_ok=True)
base_name = os.path.splitext(os.path.basename(input_file))[0]
if base_name.endswith(".jsonl"):
base_name = os.path.splitext(base_name)[0]
# Prepare arguments for parallel processing
write_args = []
skipped_files = []
for subset in subsets_data["subsets"]:
subset_idx = subset["index"]
output_name = f"{base_name}_subset_{subset_idx+1}.jsonl"
if compress:
output_name += ".bz2"
output_path = os.path.join(output_dir, output_name)
# Skip if file exists and overwrite is False
if not overwrite and os.path.exists(output_path):
skipped_files.append(output_path)
continue
write_args.append((input_file, subset["indices"], output_path, compress))
if skipped_files:
print(f"Skipping {len(skipped_files)} existing files:")
for file in skipped_files:
print(f" - {file}")
if write_args:
print(f"Processing {len(write_args)} subsets using {n_processes} processes")
with Pool(processes=n_processes) as pool:
pool.starmap(write_subset, write_args)
else:
print("No files to process - all files exist and overwrite=False")