Datasets:

Modalities:
Text
Formats:
json
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
CRAG / crag_to_subsamples.py
jchevallard's picture
Added script to create subsamples
0e25589
raw
history blame
15.2 kB
import bz2
from typing import Iterator, Dict, Any
import pandas as pd
import os
import hashlib
import json
from sklearn.model_selection import StratifiedKFold
import numpy as np
from multiprocessing import Pool, cpu_count
from functools import partial
import subprocess
def get_cache_path(file_path: str, required_fields: list[str]) -> str:
"""
Generate a unique cache file path based on input file and fields.
Args:
file_path: Path to the input JSONL file
required_fields: List of field names to extract
Returns:
Path to the cache file
"""
# Create a unique hash based on the file path and fields
fields_str = ",".join(sorted(required_fields))
hash_input = f"{fields_str}"
hash_str = hashlib.md5(hash_input.encode()).hexdigest()[:10]
# Get the directory of the input file
base_dir = os.path.dirname(file_path)
# Get filename from file path
file_name = os.path.basename(file_path).split(".")[0]
cache_name = f"{file_name}_cache_{hash_str}.parquet"
return os.path.join(base_dir, cache_name)
def read_jsonl_fields_fast(
file_path: str, required_fields: list[str], use_cache: bool = True
) -> pd.DataFrame:
"""
Quickly extract specific fields from a compressed JSONL file using string operations.
Results are cached in parquet format for faster subsequent reads.
Args:
file_path: Path to the JSONL file (can be bz2 compressed)
required_fields: List of field names to extract from each JSON object
use_cache: Whether to use/create cache file (default: True)
Returns:
DataFrame containing the requested fields
"""
cache_path = get_cache_path(file_path, required_fields)
print(f"Cache path: {cache_path}")
# Try to load from cache first
if use_cache and os.path.exists(cache_path):
return pd.read_parquet(cache_path)
# If no cache exists, process the file
records = []
patterns = [f'"{field}":' for field in required_fields]
with bz2.open(file_path, "rt") as file:
for line in file:
if not line.strip():
continue
result = {}
for field, pattern in zip(required_fields, patterns):
try:
# Find the field in the line
start_idx = line.find(pattern)
if start_idx == -1:
continue
# Move to the start of the value
start_idx += len(pattern)
while start_idx < len(line) and line[start_idx].isspace():
start_idx += 1
# Handle different value types
if start_idx >= len(line):
continue
if line[start_idx] == '"':
# String value
start_idx += 1
end_idx = line.find('"', start_idx)
value = line[start_idx:end_idx]
elif line[start_idx] == "{" or line[start_idx] == "[":
# Skip nested objects/arrays
continue
else:
# Number, boolean, or null
end_idx = line.find(",", start_idx)
if end_idx == -1:
end_idx = line.find("}", start_idx)
value = line[start_idx:end_idx].strip()
# Convert to appropriate type
if value == "true":
value = True
elif value == "false":
value = False
elif value == "null":
value = None
else:
try:
value = float(value) if "." in value else int(value)
except ValueError:
continue
result[field] = value
except Exception:
continue
if result:
records.append(result)
# Convert to DataFrame
df = pd.DataFrame.from_records(records)
# Convert columns to appropriate types
for col in df.columns:
# If the column contains any strings, convert the whole column to strings
if (
df[col].dtype == object
and df[col].apply(lambda x: isinstance(x, str)).any()
):
df[col] = df[col].astype(str)
# You can add more type conversions here if needed
# Save cache if enabled
if use_cache:
df.to_parquet(cache_path)
return df
def process_answer_types(df: pd.DataFrame) -> pd.DataFrame:
"""
Process the answer field to create a new answer_type field.
Args:
df: Input DataFrame with 'answer' column
Returns:
DataFrame with new 'answer_type' column
"""
# Create a copy to avoid modifying the original
df = df.copy()
# Print unique answers to debug
print("Unique answers in dataset:")
print(df["answer"].unique())
# Create answer_type column with case-insensitive matching
conditions = [
df["answer"].str.lower() == "invalid question",
df["answer"].str.lower() == "i don't know", # Try exact match
]
choices = ["invalid", "no_answer"]
df["answer_type"] = np.select(conditions, choices, default="valid")
# Print distribution to verify
print("\nAnswer type distribution:")
print(df["answer_type"].value_counts())
return df
def create_stratified_subsamples(
df: pd.DataFrame,
n_subsamples: int,
stratify_columns: list[str] = [
"domain",
"answer_type",
"question_type",
"static_or_dynamic",
],
output_path: str = "subsamples.json",
force_compute: bool = False,
) -> dict:
"""
Create stratified subsamples of the dataset and save them to a JSON file.
Each subsample gets a unique ID based on its indices.
Args:
df: Input DataFrame
n_subsamples: Number of subsamples to create
stratify_columns: Columns to use for stratification
output_path: Path to save/load the JSON output
force_compute: If True, always compute subsamples even if file exists
Returns:
Dictionary containing the subsamples information
"""
# Check if file exists and we can use it
if not force_compute and os.path.exists(output_path):
try:
with open(output_path, "r") as f:
subsamples_data = json.load(f)
# Validate the loaded data has the expected structure
if (
subsamples_data.get("metadata", {}).get("n_subsamples") == n_subsamples
and subsamples_data.get("metadata", {}).get("stratify_columns")
== stratify_columns
):
print(f"Loading existing subsamples from {output_path}")
return subsamples_data
else:
print(
"Existing subsamples file has different parameters, recomputing..."
)
except Exception as e:
print(f"Error loading existing subsamples file: {e}, recomputing...")
# Create a combined category for stratification
df["strat_category"] = df[stratify_columns].astype(str).agg("_".join, axis=1)
# Initialize the subsampleter
skf = StratifiedKFold(n_splits=n_subsamples, shuffle=True, random_state=42)
# Create subsamples
subsamples_info = []
for subsample_idx, (_, subsample_indices) in enumerate(
skf.split(df, df["strat_category"])
):
# Sort indices for consistent hashing
sorted_indices = sorted(subsample_indices.tolist())
# Create a deterministic ID from the indices
subsample_id = hashlib.md5(str(sorted_indices).encode()).hexdigest()[:8]
# Calculate statistics for this subsample
stats = {}
subsample_df = df.iloc[subsample_indices]
for col in stratify_columns:
stats[col] = subsample_df[col].value_counts().to_dict()
subsamples_info.append(
{
"id": subsample_id,
"statistics": stats,
"indices": sorted_indices,
"size": len(subsample_indices),
}
)
# Add global statistics
global_stats = {}
for col in stratify_columns:
global_stats[col] = df[col].value_counts().to_dict()
output_data = {
"metadata": {
"n_subsamples": n_subsamples,
"total_samples": len(df),
"stratify_columns": stratify_columns,
"global_statistics": global_stats,
},
"subsamples": subsamples_info,
}
# Save to JSON
with open(output_path, "w") as f:
json.dump(output_data, f, indent=2)
return output_data
def write_subsample(
input_file: str, indices: list[int], output_file: str, compress: bool = True
) -> None:
"""
Write a single subsample to a file using awk.
Args:
input_file: Path to input JSONL file
indices: List of indices to extract
output_file: Path to output file
compress: Whether to compress output
"""
# Convert indices to awk condition
# NR is the current line number in awk
indices_set = set(i + 1 for i in indices) # Convert to 1-based indexing
indices_str = ",".join(str(i) for i in sorted(indices_set))
# Create awk script with escaped curly braces
awk_script = (
f'BEGIN {{subsample("{indices_str}",a,","); for(i in a) n[a[i]];}} NR in n'
)
if input_file.endswith(".bz2"):
if compress:
cmd = f"bzcat '{input_file}' | awk '{awk_script}' | bzip2 > '{output_file}'"
else:
cmd = f"bzcat '{input_file}' | awk '{awk_script}' > '{output_file}'"
else:
if compress:
cmd = f"awk '{awk_script}' '{input_file}' | bzip2 > '{output_file}'"
else:
cmd = f"awk '{awk_script}' '{input_file}' > '{output_file}'"
print(f"Process {os.getpid()} - Starting subsample to {output_file}")
try:
result = subprocess.run(
cmd,
shell=True,
check=True,
stderr=subprocess.PIPE,
stdout=subprocess.PIPE,
text=True,
)
print(f"Process {os.getpid()} - Finished subsample to {output_file}")
# Verify the output file exists and has content
if os.path.exists(output_file) and os.path.getsize(output_file) > 0:
print(
f"Process {os.getpid()} - Successfully created {output_file} ({os.path.getsize(output_file)} bytes)"
)
else:
raise Exception(f"Output file {output_file} is empty or doesn't exist")
except subprocess.CalledProcessError as e:
print(f"Error executing command: {e.stderr}")
print(f"Command output: {e.stdout}")
raise
except Exception as e:
print(f"Error: {str(e)}")
raise
def subsample_jsonl_file(
input_file: str,
subsamples_file: str,
output_dir: str = None,
compress: bool = True,
n_processes: int = None,
overwrite: bool = False,
) -> None:
"""
subsample a large JSONL file into multiple files using sed for maximum performance.
Args:
input_file: Path to input JSONL file (can be bz2 compressed)
subsamples_file: Path to JSON file containing subsample indices
output_dir: Directory to save subsample files (defaults to input file directory)
compress: Whether to compress output files with bz2
n_processes: Number of processes to use (defaults to min(n_subsamples, cpu_count))
overwrite: If False, skip existing output files (default: False)
"""
# Load subsamples information
with open(subsamples_file, "r") as f:
subsamples_data = json.load(f)
# Determine optimal number of processes
n_subsamples = len(subsamples_data["subsamples"])
if n_processes is None:
n_processes = min(n_subsamples, cpu_count())
if output_dir is None:
output_dir = os.path.dirname(input_file)
os.makedirs(output_dir, exist_ok=True)
base_name = os.path.splitext(os.path.basename(input_file))[0]
if base_name.endswith(".jsonl"):
base_name = os.path.splitext(base_name)[0]
# Prepare arguments for parallel processing
write_args = []
skipped_files = []
for subsample in subsamples_data["subsamples"]:
subsample_id = subsample["id"]
output_name = f"{base_name}_subsample_{subsample_id}.jsonl"
if compress:
output_name += ".bz2"
output_path = os.path.join(output_dir, output_name)
# Skip if file exists and overwrite is False
if not overwrite and os.path.exists(output_path):
skipped_files.append(output_path)
continue
write_args.append((input_file, subsample["indices"], output_path, compress))
if skipped_files:
print(f"Skipping {len(skipped_files)} existing files:")
for file in skipped_files:
print(f" - {file}")
if write_args:
print(f"Processing {len(write_args)} subsamples using {n_processes} processes")
with Pool(processes=n_processes) as pool:
pool.starmap(write_subsample, write_args)
else:
print("No files to process - all files exist and overwrite=False")
def run_crag_task_1_and_2(
file_path: str,
fields_to_extract: list[str],
n_subsamples: int = 5,
output_dir: str = None,
compress: bool = True,
n_processes: int = None,
overwrite: bool = False,
):
# Load and process data
df = read_jsonl_fields_fast(file_path, fields_to_extract)
df = process_answer_types(df)
print(df.head())
output_path = os.path.join(
os.path.dirname(file_path),
os.path.basename(file_path).split(".")[0] + "_subsamples.json",
)
# This will load from file if it exists and parameters match
subsamples_data = create_stratified_subsamples(
df, n_subsamples=5, output_path=output_path
)
# Example of how to read and use the subsamples
with open(output_path, "r") as f:
subsamples_data = json.load(f)
# Print some information about the subsamples
print(f"Created {subsamples_data['metadata']['n_subsamples']} subsamples")
print("\nGlobal statistics:")
print(json.dumps(subsamples_data["metadata"]["global_statistics"], indent=2))
# Print statistics for first subsample
print("\nFirst subsample statistics:")
print(json.dumps(subsamples_data["subsamples"][0]["statistics"], indent=2))
# This will use all available CPU cores
subsample_jsonl_file(file_path, output_path, compress=True)
# Example usage
if __name__ == "__main__":
file_path = "./local_data/crag_task_1_and_2_dev_v4.jsonl.bz2"
fields_to_extract = ["domain", "answer", "question_type", "static_or_dynamic"]
run_crag_task_1_and_2(file_path, fields_to_extract)