--- license: cc-by-nc-sa-4.0 --- # E.T. Bench [arXiv](https://arxiv.org/abs/2409.18111) | [Project Page](https://polyu-chenlab.github.io/etbench) | [GitHub](https://github.com/PolyU-ChenLab/ETBench) E.T. Bench is a large-scale and high-quality benchmark for open-ended event-level video understanding. Categorized within a 3-level task taxonomy, it encompasses 7.3K samples under 12 tasks with 7K videos (251.4h total length) under 8 domains, providing comprehensive evaluations on 4 essential capabilities for time-sensitive video understanding. ## 📦 Data Preparation You may download the evaluation kit for E.T. Bench using the following command. ``` git lfs install git clone git@hf.co:datasets/PolyU-ChenLab/ETBench ``` Then, enter the directory and extract the files in the `videos` folder by running: ``` cd ETBench for path in videos/*.tar.gz; do tar -xvf $path -C videos; done ``` **[Optional]** You may also want to compress the videos (to lower FPS & resolution) for faster I/O. ``` python compress_videos.py --fps 3 --size 224 ```
Arguments of compress_videos.py - `--src_dir` Path to the videos folder (Default: `videos`) - `--tgt_dir` Path to the output folder (Default: `videos_compressed`) - `--fps` The target FPS for output (Default: `3`) - `--size` The length of the shortest side of output frames (Default: `224`) - `--workers` Number of workers to use (Default: `None` same as the number of CPUs)
This will compress all the videos to `3 FPS` and `224 pixels shortest side`. The audio will be removed as well. The output videos will be saved in `videos_compressed` folder with the same structure as `videos`. ## 🚀 Getting Started The folder for E.T. Bench is organized as follows. ``` ETBench ├─ annotations │ ├─ txt (annotations for sub-tasks, with timestamps as text) │ ├─ vid (annotations for sub-tasks, with timestamps as tokens) │ ├─ etbench_txt_v1.0.json (merged annotations in `txt` folder) │ └─ etbench_vid_v1.0.json (merged annotations in `vid` folder) ├─ evaluation │ ├─ compute_metrics.py (script for computing metrics) │ ├─ requirements.txt (requirements for the evaluation script) │ └─ subset.json (IDs of the subset for evaluating commercial models) ├─ videos (raw video files) ├─ videos_compressed (compressed video files) └─ compress_videos.py (script for compressing videos) ``` For full evaluation on 7,289 samples, you just need to use either of the following annotation file. - `etbench_txt_v1.0.json` - for models representing timestamps in pure text, e.g., '2.5 - 4.8 seconds' - `etbench_vid_v1.0.json` - for models using special tokens for timestamps, e.g., \ token in E.T. Chat Each JSON file contains a list of dicts with the following entries. ```python { "version": 1.0, # annotation version "idx": 0, # sample index "task": "tvg", # task "source": "qvhighlights", # source dataset "video": "qvhighlights/example.mp4", # path to video "duration": 35.0, # video duration (seconds) "src": [1.2, 15.0], # [optional] timestamps (seconds) in model inputs "tgt": [[15.0, 31.0], [31.4, 34.9]], # [optional] timestamps (seconds) in model outputs "p": 0, # [optional] index of correct answer (for RAR, ECA, RVQ, GVQ) "o": ["a", "b", "c", "d"], # [optional] answer candidates (for RAR, ECA, RVQ, GVQ) "g": ["a cat...", "it then..."], # [optional] ground truth captions (for DVC, SLC) "q": "...", # model input prompt "a": "..." # [to be added by the user] model response } ``` For each sample, you can simply load the corresponding video and send it together with the prompt in `q` to the model. In `vid` style annotations, all the timestamps in `q` have been replaced with `` and their original values can be found in `src`. After obtaining model outputs, you need to place raw text responses into the `a` entries of each sample and dump the entire list to a new JSON file. ***Please make sure the dumped file has exactly the same structure as the annotation file, except that each sample has a new `a` entry storing model outputs.*** Please refer to the [inference script](../etchat/eval/infer_etbench.py) of E.T. Chat as an example. ## 🔮 Compute Metrics Run the following command to install the requirements for the evaluation script. ``` pip install -r evaluation/requirements.txt ``` After that, compute the metrics by running ``` python evaluation/compute_metrics.py # In case you want to evaluate on the subset with 470 samples (same as the commercial models in Table 1 of the paper) # python evaluation/compute_metrics.py --subset ``` The evaluation log and computed metrics will be saved in `metrics.log` and `metrics.json`, respectively. ## 📖 Citation Please kindly cite our paper if you find this project helpful. ``` @inproceedings{liu2024etbench, title={E.T. Bench: Towards Open-Ended Event-Level Video-Language Understanding}, author={Liu, Ye and Ma, Zongyang and Qi, Zhongang and Wu, Yang and Chen, Chang Wen and Shan, Ying}, booktitle={Neural Information Processing Systems (NeurIPS)}, year={2024} } ```