Loading pytorch-gpu/py3/2.1.1 Loading requirement: cuda/11.8.0 nccl/2.18.5-1-cuda cudnn/8.7.0.84-cuda gcc/8.5.0 openmpi/4.1.5-cuda intel-mkl/2020.4 magma/2.7.1-cuda sox/14.4.2 sparsehash/2.0.3 libjpeg-turbo/2.1.3 ffmpeg/4.4.4 + HF_DATASETS_OFFLINE=1 + TRANSFORMERS_OFFLINE=1 + python3 deberta_training_multi.py train: DatasetInfo(description='', citation='', homepage='', license='', features={'metadata': Value(dtype='string', id=None), 'text': Value(dtype='string', id=None), '1_legislation': Value(dtype='int64', id=None), '10_journaux': Value(dtype='int64', id=None), '12_presentations': Value(dtype='int64', id=None), '13_lettres': Value(dtype='int64', id=None), '2_rapport_evaluation': Value(dtype='int64', id=None), '3_rapport_comptes': Value(dtype='int64', id=None), '4_rapport_activite': Value(dtype='int64', id=None), '5_rapport_risque': Value(dtype='int64', id=None), '6_plan': Value(dtype='int64', id=None), '7_charte': Value(dtype='int64', id=None), '__index_level_0__': Value(dtype='int64', id=None)}, post_processed=None, supervised_keys=None, task_templates=None, builder_name=None, dataset_name=None, config_name=None, version=None, splits=None, download_checksums=None, download_size=None, post_processing_size=None, dataset_size=None, size_in_bytes=None) test: DatasetInfo(description='', citation='', homepage='', license='', features={'metadata': Value(dtype='string', id=None), 'text': Value(dtype='string', id=None), '1_legislation': Value(dtype='int64', id=None), '10_journaux': Value(dtype='int64', id=None), '12_presentations': Value(dtype='int64', id=None), '13_lettres': Value(dtype='int64', id=None), '2_rapport_evaluation': Value(dtype='int64', id=None), '3_rapport_comptes': Value(dtype='int64', id=None), '4_rapport_activite': Value(dtype='int64', id=None), '5_rapport_risque': Value(dtype='int64', id=None), '6_plan': Value(dtype='int64', id=None), '7_charte': Value(dtype='int64', id=None), '__index_level_0__': Value(dtype='int64', id=None)}, post_processed=None, supervised_keys=None, task_templates=None, builder_name=None, dataset_name=None, config_name=None, version=None, splits=None, download_checksums=None, download_size=None, post_processing_size=None, dataset_size=None, size_in_bytes=None) validation: DatasetInfo(description='', citation='', homepage='', license='', features={'metadata': Value(dtype='string', id=None), 'text': Value(dtype='string', id=None), '1_legislation': Value(dtype='int64', id=None), '10_journaux': Value(dtype='int64', id=None), '12_presentations': Value(dtype='int64', id=None), '13_lettres': Value(dtype='int64', id=None), '2_rapport_evaluation': Value(dtype='int64', id=None), '3_rapport_comptes': Value(dtype='int64', id=None), '4_rapport_activite': Value(dtype='int64', id=None), '5_rapport_risque': Value(dtype='int64', id=None), '6_plan': Value(dtype='int64', id=None), '7_charte': Value(dtype='int64', id=None), '__index_level_0__': Value(dtype='int64', id=None)}, post_processed=None, supervised_keys=None, task_templates=None, builder_name=None, dataset_name=None, config_name=None, version=None, splits=None, download_checksums=None, download_size=None, post_processing_size=None, dataset_size=None, size_in_bytes=None) /linkhome/rech/genrug01/uft12cr/.local/lib/python3.11/site-packages/transformers/convert_slow_tokenizer.py:515: UserWarning: The sentencepiece tokenizer that you are converting to a fast tokenizer uses the byte fallback option which is not implemented in the fast tokenizers. In practice this means that the fast version of the tokenizer can produce unknown tokens whereas the sentencepiece version would have converted these unknown tokens into a sequence of byte tokens matching the original piece of text. warnings.warn( Map: 0%| | 0/751 [00:00 trainer.train() File "/linkhome/rech/genrug01/uft12cr/.local/lib/python3.11/site-packages/transformers/trainer.py", line 1561, in train return inner_training_loop( ^^^^^^^^^^^^^^^^^^^^ File "/linkhome/rech/genrug01/uft12cr/.local/lib/python3.11/site-packages/transformers/trainer.py", line 1968, in _inner_training_loop self._maybe_log_save_evaluate(tr_loss, model, trial, epoch, ignore_keys_for_eval) File "/linkhome/rech/genrug01/uft12cr/.local/lib/python3.11/site-packages/transformers/trainer.py", line 2329, in _maybe_log_save_evaluate metrics = self.evaluate(ignore_keys=ignore_keys_for_eval) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/linkhome/rech/genrug01/uft12cr/.local/lib/python3.11/site-packages/transformers/trainer.py", line 3136, in evaluate output = eval_loop( ^^^^^^^^^^ File "/linkhome/rech/genrug01/uft12cr/.local/lib/python3.11/site-packages/transformers/trainer.py", line 3427, in evaluation_loop metrics = self.compute_metrics(EvalPrediction(predictions=all_preds, label_ids=all_labels)) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/gpfsdswork/projects/rech/fmr/uft12cr/classification/deberta_training_multi.py", line 124, in compute_metrics result = multi_label_metrics( ^^^^^^^^^^^^^^^^^^^^ File "/gpfsdswork/projects/rech/fmr/uft12cr/classification/deberta_training_multi.py", line 102, in multi_label_metrics metrics_per_label = precision_recall_fscore_support(labels, y_pred, average=None) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ NameError: name 'precision_recall_fscore_support' is not defined 100%|██████████| 9/9 [00:11<00:00, 22.59it/s]COMET INFO: --------------------------------------------------------------------------------------- COMET INFO: Comet.ml OfflineExperiment Summary COMET INFO: --------------------------------------------------------------------------------------- COMET INFO: Data: COMET INFO: display_summary_level : 1 COMET INFO: name : deberta-classification-dila COMET INFO: url : [OfflineExperiment will get URL after upload] COMET INFO: Others: COMET INFO: Created from : MLFlow auto-logger COMET INFO: Name : deberta-classification-dila COMET INFO: offline_experiment : True COMET INFO: Parameters: COMET INFO: _name_or_path : deberta-large COMET INFO: adafactor : False COMET INFO: adam_beta1 : 0.9 COMET INFO: adam_beta2 : 0.999 COMET INFO: adam_epsilon : 1e-08 COMET INFO: add_cross_attention : False COMET INFO: architectures : None COMET INFO: attention_probs_dropout_prob : 0.1 COMET INFO: auto_find_batch_size : False COMET INFO: bad_words_ids : None COMET INFO: begin_suppress_tokens : None COMET INFO: bf16 : False COMET INFO: bf16_full_eval : False COMET INFO: bos_token_id : None COMET INFO: chunk_size_feed_forward : 0 COMET INFO: cross_attention_hidden_size : None COMET INFO: data_seed : None COMET INFO: dataloader_drop_last : False COMET INFO: dataloader_num_workers : 0 COMET INFO: dataloader_persistent_workers : False COMET INFO: dataloader_pin_memory : True COMET INFO: dataloader_prefetch_factor : None COMET INFO: ddp_backend : None COMET INFO: ddp_broadcast_buffers : None COMET INFO: ddp_bucket_cap_mb : None COMET INFO: ddp_find_unused_parameters : None COMET INFO: ddp_timeout : 1800 COMET INFO: debug : [] COMET INFO: decoder_start_token_id : None COMET INFO: deepspeed : None COMET INFO: disable_tqdm : False COMET INFO: dispatch_batches : None COMET INFO: diversity_penalty : 0.0 COMET INFO: do_eval : True COMET INFO: do_predict : False COMET INFO: do_sample : False COMET INFO: do_train : False COMET INFO: early_stopping : False COMET INFO: encoder_no_repeat_ngram_size : 0 COMET INFO: eos_token_id : None COMET INFO: eval_accumulation_steps : None COMET INFO: eval_delay : 0 COMET INFO: eval_steps : None COMET INFO: evaluation_strategy : epoch COMET INFO: exponential_decay_length_penalty : None COMET INFO: finetuning_task : None COMET INFO: forced_bos_token_id : None COMET INFO: forced_eos_token_id : None COMET INFO: fp16 : False COMET INFO: fp16_backend : auto COMET INFO: fp16_full_eval : False COMET INFO: fp16_opt_level : O1 COMET INFO: fsdp : [] COMET INFO: fsdp_config : {"min_num_params": 0, "xla": false, "xla_fsdp_grad_ckpt": false} COMET INFO: fsdp_min_num_params : 0 COMET INFO: fsdp_transformer_layer_cls_to_wrap : None COMET INFO: full_determinism : False COMET INFO: gradient_accumulation_steps : 1 COMET INFO: gradient_checkpointing : False COMET INFO: gradient_checkpointing_kwargs : None COMET INFO: greater_is_better : True COMET INFO: group_by_length : False COMET INFO: half_precision_backend : auto COMET INFO: hidden_act : gelu COMET INFO: hidden_dropout_prob : 0.1 COMET INFO: hidden_size : 768 COMET INFO: hub_always_push : False COMET INFO: hub_model_id : None COMET INFO: hub_private_repo : False COMET INFO: hub_strategy : every_save COMET INFO: hub_token : COMET INFO: id2label : {"0": "1_legislation", "1": "10_journaux", "2": "12_presentations", "3": "13_lettres", "4": "2_rapport_evaluation", "5": "3_rapport_comptes", "6": "4_rapport_activite", "7": "5_rapport_risque", "8": "6_plan", "9": "7_charte", "10": "__index_level_0__"} COMET INFO: ignore_data_skip : False COMET INFO: include_inputs_for_metrics : False COMET INFO: include_num_input_tokens_seen : False COMET INFO: include_tokens_per_second : False COMET INFO: initializer_range : 0.02 COMET INFO: intermediate_size : 3072 COMET INFO: is_decoder : False COMET INFO: is_encoder_decoder : False COMET INFO: jit_mode_eval : False COMET INFO: label2id : {"10_journaux": 1, "12_presentations": 2, "13_lettres": 3, "1_legislation": 0, "2_rapport_evaluation": 4, "3_rapport_comptes": 5, "4_rapport_activite": 6, "5_rapport_risque": 7, "6_plan": 8, "7_charte": 9, "__index_level_0__": 10} COMET INFO: label_names : None COMET INFO: label_smoothing_factor : 0.0 COMET INFO: layer_norm_eps : 1e-07 COMET INFO: learning_rate : 1e-05 COMET INFO: length_column_name : length COMET INFO: length_penalty : 1.0 COMET INFO: load_best_model_at_end : True COMET INFO: local_rank : 0 COMET INFO: log_level : passive COMET INFO: log_level_replica : warning COMET INFO: log_on_each_node : True COMET INFO: logging_dir : deberta-classification-dila/runs/May06_14-31-32_r6i2n2 COMET INFO: logging_first_step : False COMET INFO: logging_nan_inf_filter : True COMET INFO: logging_steps : 500 COMET INFO: logging_strategy : steps COMET INFO: lr_scheduler_kwargs : {} COMET INFO: lr_scheduler_type : linear COMET INFO: max_grad_norm : 1.0 COMET INFO: max_length : 20 COMET INFO: max_position_embeddings : 512 COMET INFO: max_relative_positions : -1 COMET INFO: max_steps : -1 COMET INFO: metric_for_best_model : f1 COMET INFO: min_length : 0 COMET INFO: model_type : deberta-v2 COMET INFO: mp_parameters : COMET INFO: neftune_noise_alpha : None COMET INFO: no_cuda : False COMET INFO: no_repeat_ngram_size : 0 COMET INFO: norm_rel_ebd : layer_norm COMET INFO: num_attention_heads : 12 COMET INFO: num_beam_groups : 1 COMET INFO: num_beams : 1 COMET INFO: num_hidden_layers : 12 COMET INFO: num_return_sequences : 1 COMET INFO: num_train_epochs : 4 COMET INFO: optim : adamw_torch COMET INFO: optim_args : None COMET INFO: output_attentions : False COMET INFO: output_dir : deberta-classification-dila COMET INFO: output_hidden_states : False COMET INFO: output_scores : False COMET INFO: overwrite_output_dir : False COMET INFO: pad_token_id : 0 COMET INFO: past_index : -1 COMET INFO: per_device_eval_batch_size : 8 COMET INFO: per_device_train_batch_size : 8 COMET INFO: per_gpu_eval_batch_size : None COMET INFO: per_gpu_train_batch_size : None COMET INFO: pooler_dropout : 0 COMET INFO: pooler_hidden_act : gelu COMET INFO: pooler_hidden_size : 768 COMET INFO: pos_att_type : ['p2c', 'c2p'] COMET INFO: position_biased_input : False COMET INFO: position_buckets : 256 COMET INFO: prediction_loss_only : False COMET INFO: prefix : None COMET INFO: problem_type : multi_label_classification COMET INFO: pruned_heads : {} COMET INFO: push_to_hub : False COMET INFO: push_to_hub_model_id : None COMET INFO: push_to_hub_organization : None COMET INFO: push_to_hub_token : COMET INFO: ray_scope : last COMET INFO: relative_attention : True COMET INFO: remove_invalid_values : False COMET INFO: remove_unused_columns : True COMET INFO: repetition_penalty : 1.0 COMET INFO: report_to : ['mlflow', 'tensorboard'] COMET INFO: resume_from_checkpoint : None COMET INFO: return_dict : True COMET INFO: return_dict_in_generate : False COMET INFO: run_name : deberta-classification-dila COMET INFO: save_on_each_node : False COMET INFO: save_only_model : False COMET INFO: save_safetensors : True COMET INFO: save_steps : 500 COMET INFO: save_strategy : epoch COMET INFO: save_total_limit : None COMET INFO: seed : 42 COMET INFO: sep_token_id : None COMET INFO: share_att_key : True COMET INFO: skip_memory_metrics : True COMET INFO: split_batches : False COMET INFO: suppress_tokens : None COMET INFO: task_specific_params : None COMET INFO: temperature : 1.0 COMET INFO: tf32 : None COMET INFO: tf_legacy_loss : False COMET INFO: tie_encoder_decoder : False COMET INFO: tie_word_embeddings : True COMET INFO: tokenizer_class : None COMET INFO: top_k : 50 COMET INFO: top_p : 1.0 COMET INFO: torch_compile : False COMET INFO: torch_compile_backend : None COMET INFO: torch_compile_mode : None COMET INFO: torch_dtype : None COMET INFO: torchdynamo : None COMET INFO: torchscript : False COMET INFO: tpu_metrics_debug : False COMET INFO: tpu_num_cores : None COMET INFO: transformers_version : 4.38.0.dev0 COMET INFO: type_vocab_size : 0 COMET INFO: typical_p : 1.0 COMET INFO: use_bfloat16 : False COMET INFO: use_cpu : False COMET INFO: use_ipex : False COMET INFO: use_legacy_prediction_loop : False COMET INFO: use_mps_device : False COMET INFO: vocab_size : 251000 COMET INFO: warmup_ratio : 0.0 COMET INFO: warmup_steps : 0 COMET INFO: weight_decay : 0.01 COMET INFO: Uploads: COMET INFO: conda-environment-definition : 1 COMET INFO: conda-info : 1 COMET INFO: conda-specification : 1 COMET INFO: environment details : 1 COMET INFO: filename : 1 COMET INFO: installed packages : 1 COMET INFO: source_code : 1 (4.46 KB) COMET INFO: COMET WARNING: To get all data logged automatically, import comet_ml before the following modules: sklearn, torch. COMET INFO: Still saving offline stats to messages file before program termination (may take up to 120 seconds) COMET INFO: Starting saving the offline archive COMET INFO: To upload this offline experiment, run: comet upload /gpfsdswork/projects/rech/fmr/uft12cr/classification/.cometml-runs/a7c8e67565944e0b877cc72ae9023b53.zip Exception ignored in: Traceback (most recent call last): File "/linkhome/rech/genrug01/uft12cr/.local/lib/python3.11/site-packages/tqdm/std.py", line 1149, in __del__ File "/linkhome/rech/genrug01/uft12cr/.local/lib/python3.11/site-packages/tqdm/std.py", line 1303, in close File "/linkhome/rech/genrug01/uft12cr/.local/lib/python3.11/site-packages/tqdm/std.py", line 1496, in display File "/linkhome/rech/genrug01/uft12cr/.local/lib/python3.11/site-packages/tqdm/std.py", line 1152, in __str__ File "/linkhome/rech/genrug01/uft12cr/.local/lib/python3.11/site-packages/tqdm/std.py", line 1454, in format_dict File "/linkhome/rech/genrug01/uft12cr/.local/lib/python3.11/site-packages/tqdm/utils.py", line 335, in _screen_shape_linux File "", line 1173, in _find_and_load File "", line 170, in __enter__ File "", line 196, in _get_module_lock File "", line 72, in __init__ TypeError: 'NoneType' object is not callable