File size: 10,599 Bytes
106d6b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import os
import pandas as pd
import pyarrow.parquet as pq
import json
import numpy as np

# Configuration
base_dir = "/lustre/fsn1/projects/rech/fmr/uft12cr/statistics_corpus_full"
set_dirs = [f"set_{i}" for i in range(1, 11)]  # Sets 1 to 10, excluding filtered sets
test = False  # Set to True to process only a single Parquet file
min_tokens_threshold = 100000  # Minimum tokens required to report certain statistics

# Dictionary to accumulate statistics
stats = {
    "total_tokens_by_language": {},
    "total_words_by_language": {},
    "total_tokens_by_collection": {},
    "total_words_by_collection": {},
    "doc_count_by_language": {},
    "doc_count_by_collection": {},
    "license_distribution": {},
    "compression_rate_by_language": {},
    "avg_doc_length_words_by_language": {},
    "avg_doc_length_tokens_by_language": {},
    "compression_rate_by_collection": {},
    "avg_doc_length_words_by_collection": {},
    "avg_doc_length_tokens_by_collection": {},
}

processed_files = 0
errors_count = 0

# Helper function to update dictionaries for language and collection statistics
def update_stats(df):
    required_columns = {"collection", "language", "token_count", "word_count", "license"}
    if not required_columns.issubset(df.columns):
        print("DataFrame is missing required columns.")
        return

    try:
        df.loc[df['collection'].notna() & df['collection'].str.contains("Github", case=False), 'language'] = 'code'

        for collection_name, col_df in df.groupby("collection"):
            stats["total_tokens_by_collection"].setdefault(collection_name, 0)
            stats["total_tokens_by_collection"][collection_name] += col_df["token_count"].sum()
            stats["total_words_by_collection"].setdefault(collection_name, 0)
            stats["total_words_by_collection"][collection_name] += col_df["word_count"].sum()
            stats["doc_count_by_collection"].setdefault(collection_name, 0)
            stats["doc_count_by_collection"][collection_name] += len(col_df)

            license_counts = col_df["license"].value_counts().to_dict()
            for license_type, count in license_counts.items():
                stats["license_distribution"].setdefault(collection_name, {}).setdefault(license_type, 0)
                stats["license_distribution"][collection_name][license_type] += count

        for language, lang_df in df.groupby("language"):
            stats["total_tokens_by_language"].setdefault(language, 0)
            stats["total_tokens_by_language"][language] += lang_df["token_count"].sum()
            stats["total_words_by_language"].setdefault(language, 0)
            stats["total_words_by_language"][language] += lang_df["word_count"].sum()
            stats["doc_count_by_language"].setdefault(language, 0)
            stats["doc_count_by_language"][language] += len(lang_df)

    except Exception as e:
        print(f"Error updating statistics: {e}")

# Gather all parquet files, with only one if in test mode
all_parquet_files = []
for set_dir in set_dirs:
    set_path = os.path.join(base_dir, set_dir)
    if not os.path.isdir(set_path):
        print(f"Directory {set_path} not found, skipping...")
        continue
    try:
        parquet_files = [os.path.join(set_path, f) for f in os.listdir(set_path) if f.endswith(".parquet")]
        all_parquet_files.extend(parquet_files)
    except Exception as e:
        print(f"Error reading directory {set_path}: {e}")
if test:
    all_parquet_files = all_parquet_files[:1]

# Process all selected parquet files
total_files = len(all_parquet_files)
for file_path in all_parquet_files:
    try:
        df = pq.read_table(file_path).to_pandas()
        update_stats(df)
        processed_files += 1
    except Exception as e:
        print(f"Error processing file {file_path}: {e}")
        errors_count += 1

    if processed_files % 10 == 0 or processed_files == total_files:
        print(f"Processed {processed_files}/{total_files} files with {errors_count} errors.")

# Compute compression rates and average document lengths by language with threshold checks
for language in stats["total_tokens_by_language"]:
    try:
        total_tokens = stats["total_tokens_by_language"][language]
        total_words = stats["total_words_by_language"][language]
        doc_count = stats["doc_count_by_language"][language]

        if total_tokens >= min_tokens_threshold:
            stats["compression_rate_by_language"][language] = total_tokens / total_words if total_words > 0 else None
            stats["avg_doc_length_words_by_language"][language] = total_words / doc_count if doc_count > 0 else None
            stats["avg_doc_length_tokens_by_language"][language] = total_tokens / doc_count if doc_count > 0 else None
        else:
            stats["compression_rate_by_language"][language] = "N/A"
            stats["avg_doc_length_words_by_language"][language] = "N/A"
            stats["avg_doc_length_tokens_by_language"][language] = "N/A"
    except Exception as e:
        print(f"Error calculating stats for language {language}: {e}")

# Compute compression rates and average document lengths by collection with threshold checks
for collection in stats["total_tokens_by_collection"]:
    try:
        total_tokens = stats["total_tokens_by_collection"][collection]
        total_words = stats["total_words_by_collection"][collection]
        doc_count = stats["doc_count_by_collection"][collection]

        if total_tokens >= min_tokens_threshold:
            stats["compression_rate_by_collection"][collection] = total_tokens / total_words if total_words > 0 else None
            stats["avg_doc_length_words_by_collection"][collection] = total_words / doc_count if doc_count > 0 else None
            stats["avg_doc_length_tokens_by_collection"][collection] = total_tokens / doc_count if doc_count > 0 else None
        else:
            stats["compression_rate_by_collection"][collection] = "N/A"
            stats["avg_doc_length_words_by_collection"][collection] = "N/A"
            stats["avg_doc_length_tokens_by_collection"][collection] = "N/A"
    except Exception as e:
        print(f"Error calculating stats for collection {collection}: {e}")

# Convert to native types function
def convert_to_native_types(stats):
    def convert(value):
        if isinstance(value, (np.integer, np.floating)):
            return value.item()
        elif isinstance(value, dict):
            return {k: convert(v) for k, v in value.items()}
        return value
    return {k: convert(v) for k, v in stats.items()}

# Print and save statistics in human-readable format
def print_stats(stats):
    output = []
    output.append("============ Corpus Statistics Overview ============")
    total_tokens = sum(stats["total_tokens_by_collection"].values())
    total_words = sum(stats["total_words_by_collection"].values())
    total_docs = sum(stats["doc_count_by_collection"].values())
    output.append(f"\nTotal Tokens in Corpus: {total_tokens:,}")
    output.append(f"Total Words in Corpus: {total_words:,}")
    output.append(f"Total Documents in Corpus: {total_docs:,}")

    # Display top 10 collections by total tokens
    output.append("\nTop 10 Collections by Total Tokens:")
    for collection, count in sorted(stats["total_tokens_by_collection"].items(), key=lambda x: x[1], reverse=True)[:10]:
        output.append(f"  - {collection}: {count:,}")

    # Display top 10 languages by total tokens
    output.append("\nTop 10 Languages by Total Tokens:")
    for language, count in sorted(stats["total_tokens_by_language"].items(), key=lambda x: x[1], reverse=True)[:10]:
        output.append(f"  - {language}: {count:,}")

    # Display compression rate by language (top 10)
    output.append("\nCompression Rate by Language (Top 10):")
    for language, rate in sorted(stats["compression_rate_by_language"].items(), key=lambda x: x[1] if isinstance(x[1], (int, float)) else 0, reverse=True)[:10]:
        output.append(f"  - {language}: {rate:.2f}" if isinstance(rate, (int, float)) else f"  - {language}: N/A")

    # Display average document length by language (top 10)
    output.append("\nAverage Document Length (Words) by Language (Top 10):")
    for language, avg_len in sorted(stats["avg_doc_length_words_by_language"].items(), key=lambda x: x[1] if isinstance(x[1], (int, float)) else 0, reverse=True)[:10]:
        output.append(f"  - {language}: {avg_len:.2f}" if isinstance(avg_len, (int, float)) else f"  - {language}: N/A")

    # License distribution by collection (top 5 collections)
    output.append("\nLicense Distribution by Collection (Top 5):")
    for collection, licenses in list(sorted(stats["license_distribution"].items(), key=lambda x: sum(x[1].values()), reverse=True))[:5]:
        output.append(f"  - {collection}:")
        for license_type, count in sorted(licenses.items(), key=lambda x: x[1], reverse=True):
            output.append(f"    * {license_type}: {count:,}")

    output.append("====================================================")
    print("\n".join(output))

    # Save to text file
    with open('stats_readable_output.txt', 'w') as f:
        f.write("\n".join(output))

# Print and save the human-readable stats
print_stats(stats)

# Convert to native types and save as JSON
stats_native = convert_to_native_types(stats)

with open('stats_by_language.json', 'w') as f:
    json.dump({
        'total_tokens_by_language': stats_native['total_tokens_by_language'],
        'total_words_by_language': stats_native['total_words_by_language'],
        'doc_count_by_language': stats_native['doc_count_by_language'],
        'compression_rate_by_language': stats_native['compression_rate_by_language'],
        'avg_doc_length_words_by_language': stats_native['avg_doc_length_words_by_language'],
        'avg_doc_length_tokens_by_language': stats_native['avg_doc_length_tokens_by_language'],
    }, f, indent=4)

with open('stats_by_collection.json', 'w') as f:
    json.dump({
        'total_tokens_by_collection': stats_native['total_tokens_by_collection'],
        'total_words_by_collection': stats_native['total_words_by_collection'],
        'doc_count_by_collection': stats_native['doc_count_by_collection'],
        'compression_rate_by_collection': stats_native['compression_rate_by_collection'],
        'avg_doc_length_words_by_collection': stats_native['avg_doc_length_words_by_collection'],
        'avg_doc_length_tokens_by_collection': stats_native['avg_doc_length_tokens_by_collection'],
        'license_distribution': stats_native['license_distribution'],
    }, f, indent=4)