# Loading script for the SQAC dataset. import json import datasets logger = datasets.logging.get_logger(__name__) _CITATION = """ bibtex @article{DBLP:journals/corr/abs-2107-07253, author = {Asier Guti{\'{e}}rrez{-}Fandi{\~{n}}o and Jordi Armengol{-}Estap{\'{e}} and Marc P{\`{a}}mies and Joan Llop{-}Palao and Joaqu{\'{\i}}n Silveira{-}Ocampo and Casimiro Pio Carrino and Aitor Gonzalez{-}Agirre and Carme Armentano{-}Oller and Carlos Rodr{\'{\i}}guez Penagos and Marta Villegas}, title = {Spanish Language Models}, journal = {CoRR}, volume = {abs/2107.07253}, year = {2021}, url = {https://arxiv.org/abs/2107.07253}, archivePrefix = {arXiv}, eprint = {2107.07253}, timestamp = {Wed, 21 Jul 2021 15:55:35 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2107-07253.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } """ _DESCRIPTION = """ This dataset contains 6,247 contexts and 18,817 questions with their answers, 1 to 5 for each fragment. The sources of the contexts are: * Encyclopedic articles from [Wikipedia in Spanish](https://es.wikipedia.org/), used under [CC-by-sa licence](https://creativecommons.org/licenses/by-sa/3.0/legalcode). * News from [Wikinews in Spanish](https://es.wikinews.org/), used under [CC-by licence](https://creativecommons.org/licenses/by/2.5/). * Text from the Spanish corpus [AnCora](http://clic.ub.edu/corpus/en), which is a mix from diferent newswire and literature sources, used under [CC-by licence] (https://creativecommons.org/licenses/by/4.0/legalcode). This dataset can be used to build extractive-QA. """ _HOMEPAGE = """""" _URL = "https://huggingface.co./datasets/PlanTL-GOB-ES/SQAC/tree/main" _TRAINING_FILE = "train.json" _DEV_FILE = "dev.json" _TEST_FILE = "test.json" class SQACConfig(datasets.BuilderConfig): """ Builder config for the SQAC dataset """ def __init__(self, **kwargs): """BuilderConfig for SQAC. Args: **kwargs: keyword arguments forwarded to super. """ super(SQACConfig, self).__init__(**kwargs) class SQAC(datasets.GeneratorBasedBuilder): """SQAC Dataset.""" BUILDER_CONFIGS = [ SQACConfig( name="SQAC", #version=datasets.Version("1.0.1"), description="SQAC dataset", ), ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "id": datasets.Value("string"), "title": datasets.Value("string"), "context": datasets.Value("string"), "question": datasets.Value("string"), "answers": datasets.features.Sequence( { "text": datasets.Value("string"), "answer_start": datasets.Value("int32"), } ), } ), # No default supervised_keys (as we have to pass both question # and context as input). supervised_keys=None, homepage=_HOMEPAGE, citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" urls_to_download = { "train": f"{_URL}{_TRAINING_FILE}", "dev": f"{_URL}{_DEV_FILE}", "test": f"{_URL}{_TEST_FILE}", } downloaded_files = dl_manager.download_and_extract(urls_to_download) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}), datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}), ] def _generate_examples(self, filepath): """This function returns the examples in the raw (text) form.""" logger.info("generating examples from = %s", filepath) with open(filepath, encoding="utf-8") as f: sqac_data = json.load(f) for article in sqac_data["data"]: title = article.get("title", "").strip() for paragraph in article["paragraphs"]: context = paragraph["context"].strip() for qa in paragraph["qas"]: question = qa["question"].strip() id_ = qa["id"] answer_starts = [answer["answer_start"] for answer in qa["answers"]] answers = [answer["text"].strip() for answer in qa["answers"]] # Features currently used are "context", "question", and "answers". # Others are extracted here for the ease of future expansions. yield id_, { "title": title, "context": context, "question": question, "id": id_, "answers": { "answer_start": answer_starts, "text": answers, }, }