|
import os |
|
import tarfile |
|
import datasets |
|
import pandas as pd |
|
from typing import Dict, List |
|
import io |
|
from tqdm import tqdm |
|
import csv |
|
import os |
|
|
|
_DESCRIPTION = """ |
|
This dataset consists of over 385 hours of audio extracted from various YouTube videos in the Persian language. |
|
|
|
Note: This dataset contains raw, unvalidated transcriptions. Users are advised to: |
|
1. Perform their own quality assessment |
|
2. Create their own train/validation/test splits based on their specific needs |
|
3. Validate a subset of the data if needed for their use case |
|
""" |
|
|
|
_CITATION = """ |
|
Use this repo info/link for citation. |
|
""" |
|
|
|
_LICENSE = "https://creativecommons.org/publicdomain/zero/1.0/" |
|
|
|
_HOMEPAGE = "https://huggingface.co./datasets/PerSets/fytasr" |
|
|
|
_BASE_URL = "D:/persets/ytDataset/" |
|
|
|
_AUDIO_URL = _BASE_URL + "clips/unvalidated_{shard_idx}.tar" |
|
|
|
class FarsiYoutubeDataset(datasets.GeneratorBasedBuilder): |
|
|
|
DEFAULT_WRITER_BATCH_SIZE = 1000 |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
features=datasets.Features({ |
|
"audio": datasets.Audio(sampling_rate=44_000), |
|
"text": datasets.Value("string"), |
|
"file_name": datasets.Value("string"), |
|
}), |
|
supervised_keys=None, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
version=self.VERSION, |
|
description=_DESCRIPTION |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
|
|
archive_paths = [_AUDIO_URL.format(shard_idx=i) for i in range(1, 3)] |
|
local_extracted_archive_paths = dl_manager.extract(archive_paths) if not dl_manager.is_streaming else {} |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name="unvalidated", |
|
gen_kwargs={ |
|
|
|
|
|
"local_extracted_archive_paths": local_extracted_archive_paths, |
|
"archives": [dl_manager.iter_archive(path) for path in archive_paths], |
|
"meta_path": _BASE_URL + "/clips/unvalidated.csv", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, local_extracted_archive_paths, archives, meta_path): |
|
"""Yields examples.""" |
|
|
|
data_fields = list(self._info().features.keys()) |
|
metadata = {} |
|
with open(meta_path, encoding="utf-8") as f: |
|
reader = csv.DictReader(f, delimiter=",", quoting=csv.QUOTE_NONE) |
|
for row in tqdm(reader, desc="Reading metadata..."): |
|
if not row["file_name"].endswith(".mp3"): |
|
row["file_name"] += ".mp3" |
|
if "sentence" in row: |
|
row['text'] = row['sentence'] |
|
del row['sentence'] |
|
for field in data_fields: |
|
if field not in row: |
|
row[field] = "" |
|
metadata[row["file_name"]] = row |
|
|
|
for i, audio_archive in enumerate(archives): |
|
for path, file in audio_archive: |
|
_, filename = os.path.split(path) |
|
if filename in metadata: |
|
result = dict(metadata[filename]) |
|
|
|
path = os.path.join(local_extracted_archive_paths[i], path) if local_extracted_archive_paths else path |
|
result["audio"] = {"path": path, "bytes": file.read()} |
|
result["file_name"] = path |
|
yield path, result |