Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
LouisThomson commited on
Commit
0c95d61
β€’
1 Parent(s): 25ebfa7

Added clean.py

Browse files
Files changed (1) hide show
  1. clean.py +153 -0
clean.py ADDED
@@ -0,0 +1,153 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+ import math
3
+
4
+ import pandas as pd
5
+
6
+ from tqdm import tqdm
7
+
8
+ seed = 7497
9
+
10
+ TOXIC_COLUMNS = [
11
+ "toxic",
12
+ "severe_toxic",
13
+ "obscene",
14
+ "threat",
15
+ "insult",
16
+ "identity_hate",
17
+ ]
18
+
19
+ # Time and date regexes
20
+ TIME = r"([0-9]{1,2}:[0-9]{2}( (am|AM|pm|PM))?)"
21
+ DAY = r"([23]?(1(st)?|2(nd)?|3(rd)?|[4-9](th)?)|1[0-9](th)?)"
22
+ MONTH = r"(January|February|March|April|May|June|July|August|September|October|November|December|Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Nov|Dec)"
23
+ YEAR = r"('?[0-9]{2}|[0-9]{4})"
24
+ DATE = rf"(({DAY} {MONTH}|{MONTH} {DAY})(,? {YEAR})?)"
25
+ TIMESTAMP = rf"((({TIME},? (\(UTC\) )?)?{DATE}|({DATE},? )?{TIME})(\s+\(UTC\))?)"
26
+
27
+ # The 'talk' part at the end of a signature
28
+ TALK = r"((\|\s*|\(\s*)?[tT]alk((\s*[-|β€’, ]\s*|\s+)[cC]ontribs)?(\s*[-|)])?)"
29
+
30
+ # IP addresses
31
+ IP = r"([0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3})"
32
+
33
+ # Username and the username part of a the signature
34
+ USERNAME = r"([^#<>[\]|{}/@\s]+)"
35
+ USER_SIG = rf"((((?:\s)[-–—]\s*)?(\((User:)?{USERNAME}\)|User:{USERNAME})|(?:\s)[-–—]\s*{USERNAME})(\s+{TALK})?)"
36
+
37
+ # A full signature
38
+ SIGNATURE = rf"(((([-–—]\s*)?{IP}(\s+{USER_SIG})?|(?:\s)[-–—]\s*[uU]nsigned|{TALK}|{USER_SIG})(\s+{TIMESTAMP})?)|{TIMESTAMP}(\s+{TALK})?)"
39
+
40
+ # List of the patterns to remove
41
+ REGEX_REMOVE = [
42
+ r"^(\"+|'+)", # Initial quotation marks
43
+ r"(\"+|'+)$", # Final quotation marks
44
+ r"^REDIRECT.*$", # The whole comment is a redirect
45
+ rf"^\s*{SIGNATURE}", # Initial signature
46
+ rf"{SIGNATURE}\s*$", # Final signature
47
+ r" \[[0-9]+\]|\[[0-9]+\] ", # Citations
48
+ r"β€–\s+[tT]alk - [-a-zA-Z0-9._()\s]+β€–",
49
+ r"==[^=]+==",
50
+ r"^::+",
51
+ r"^\s*\(UTC\)",
52
+ rf"Unblock {IP}",
53
+ r"2nd Unblock Request",
54
+ r":Category:",
55
+ r"File:[^\s]+",
56
+ r"\{\|.+\|\}", # Embedded code
57
+ # r"\{\{.+\s.+\}\}", # Embedded code
58
+ r"^\s+", # Initial whitespace
59
+ r"\s+$", # Trailing whitespace
60
+ ]
61
+
62
+ # List of patterns to replaces
63
+ REGEX_REPLACE = {
64
+ "\n+": "\n",
65
+ "\\'": "'",
66
+ '""+': '"',
67
+ "''+": "'",
68
+ # r"(WP|Wikipedia):[^\s]+": "URL", # Wikipedia internal links
69
+ r"[^\s]+#[^\s]+": "URL", # Wikipedia internal links
70
+ r"https?:\/\/(www\.)?[-a-zA-Z0-9@:%._\+~#=]{2,256}\.[a-z]{2,4}\b([-a-zA-Z0-9@:%_\+.~#?&//=]*)": "URL", # ULRs
71
+ r"([uU]ser_[tT]alk|[tT]alk):[^\s]+": "URL", # Talk links
72
+ }
73
+
74
+
75
+ def clean_sentence(sentence):
76
+ """Preprocess a sentence using the regex rules"""
77
+ for pattern in REGEX_REMOVE:
78
+ sentence = re.sub(pattern, "", sentence)
79
+ for pattern, repl in REGEX_REPLACE.items():
80
+ sentence = re.sub(pattern, repl, sentence)
81
+ return sentence
82
+
83
+
84
+ def make_binary_label(row):
85
+ """Make a row label binary by combining all toxicity types"""
86
+ for column in TOXIC_COLUMNS:
87
+ if row[column] == 1:
88
+ return 1
89
+ return 0
90
+
91
+
92
+ print("Loading original data...")
93
+
94
+ # Load up the original data
95
+ train_df = pd.read_csv("orig_train.csv").set_index("id")
96
+ test_text_df = pd.read_csv("orig_test.csv").set_index("id")
97
+ test_labels_df = pd.read_csv("orig_test_labels.csv").set_index("id")
98
+
99
+ # Remove the datapoints which have no label
100
+ test_text_df = test_text_df.loc[test_labels_df["toxic"] != -1]
101
+ test_labels_df = test_labels_df.loc[test_labels_df["toxic"] != -1]
102
+
103
+ # Join the test text and labels to make a complete dataset
104
+ test_df = test_text_df.join(test_labels_df)
105
+
106
+ print("Cleaning train split...")
107
+ for index, row in tqdm(train_df.iterrows(), total=len(train_df)):
108
+ row["comment_text"] = clean_sentence(row["comment_text"])
109
+
110
+ print("Cleaning test split...")
111
+ for index, row in tqdm(test_df.iterrows(), total=len(test_df)):
112
+ row["comment_text"] = clean_sentence(row["comment_text"])
113
+
114
+
115
+ # Some texts will get reduced to the empty string. Let's remove them first
116
+ print("Removing empty texts...")
117
+ train_df = train_df.loc[train_df["comment_text"] != ""]
118
+ test_df = test_df.loc[test_df["comment_text"] != ""]
119
+
120
+ # Get rid of any duplicates we made
121
+ print("Removing duplicate entries...")
122
+ train_df = train_df.drop_duplicates(subset=["comment_text"])
123
+ test_df = test_df.drop_duplicates(subset=["comment_text"])
124
+
125
+ print("Creating binary column...")
126
+
127
+ # Make the new binary column
128
+ train_df["label"] = train_df.apply(make_binary_label, axis=1)
129
+ test_df["label"] = test_df.apply(make_binary_label, axis=1)
130
+
131
+ # Remove all other classification columns
132
+ train_df = train_df.drop(columns=TOXIC_COLUMNS)
133
+ test_df = test_df.drop(columns=TOXIC_COLUMNS)
134
+
135
+ print("Creating eval split...")
136
+
137
+ # Shuffle the current train split
138
+ train_df = train_df.sample(frac=1, random_state=seed)
139
+
140
+ # The new size of the train split
141
+ train_size = math.floor(len(train_df) * 0.8)
142
+
143
+ # Separate into train and eval splits
144
+ eval_df = train_df[train_size:]
145
+ train_df = train_df[:train_size]
146
+
147
+ # print("Saving to disk...")
148
+ with open("train.csv", "w") as f:
149
+ train_df.to_csv(f)
150
+ with open("evaluation.csv", "w") as f:
151
+ eval_df.to_csv(f)
152
+ with open("test.csv", "w") as f:
153
+ test_df.to_csv(f)