Datasets:
Tasks:
Text Classification
Modalities:
Text
Sub-tasks:
hate-speech-detection
Languages:
English
Size:
100K - 1M
License:
import re | |
import math | |
import pandas as pd | |
from tqdm import tqdm | |
seed = 7497 | |
TOXIC_COLUMNS = [ | |
"toxic", | |
"severe_toxic", | |
"obscene", | |
"threat", | |
"insult", | |
"identity_hate", | |
] | |
# Time and date regexes | |
TIME = r"([0-9]{1,2}:[0-9]{2}( (am|AM|pm|PM))?)" | |
DAY = r"([23]?(1(st)?|2(nd)?|3(rd)?|[4-9](th)?)|1[0-9](th)?)" | |
MONTH = r"(January|February|March|April|May|June|July|August|September|October|November|December|Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Nov|Dec)" | |
YEAR = r"('?[0-9]{2}|[0-9]{4})" | |
DATE = rf"(({DAY} {MONTH}|{MONTH} {DAY})(,? {YEAR})?)" | |
TIMESTAMP = rf"((({TIME},? (\(UTC\) )?)?{DATE}|({DATE},? )?{TIME})(\s+\(UTC\))?)" | |
# The 'talk' part at the end of a signature | |
TALK = r"((\|\s*|\(\s*)?[tT]alk((\s*[-|β’, ]\s*|\s+)[cC]ontribs)?(\s*[-|)])?)" | |
# IP addresses | |
IP = r"([0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3})" | |
# Username and the username part of a the signature | |
USERNAME = r"([^#<>[\]|{}/@\s]+)" | |
USER_SIG = rf"((((?:\s)[-ββ]\s*)?(\((User:)?{USERNAME}\)|User:{USERNAME})|(?:\s)[-ββ]\s*{USERNAME})(\s+{TALK})?)" | |
# A full signature | |
SIGNATURE = rf"(((([-ββ]\s*)?{IP}(\s+{USER_SIG})?|(?:\s)[-ββ]\s*[uU]nsigned|{TALK}|{USER_SIG})(\s+{TIMESTAMP})?)|{TIMESTAMP}(\s+{TALK})?)" | |
# List of the patterns to remove | |
REGEX_REMOVE = [ | |
r"^(\"+|'+)", # Initial quotation marks | |
r"(\"+|'+)$", # Final quotation marks | |
r"^REDIRECT.*$", # The whole comment is a redirect | |
rf"^\s*{SIGNATURE}", # Initial signature | |
rf"{SIGNATURE}\s*$", # Final signature | |
r" \[[0-9]+\]|\[[0-9]+\] ", # Citations | |
r"β\s+[tT]alk - [-a-zA-Z0-9._()\s]+β", | |
r"==[^=]+==", | |
r"^::+", | |
r"^\s*\(UTC\)", | |
rf"Unblock {IP}", | |
r"2nd Unblock Request", | |
r":Category:", | |
r"File:[^\s]+", | |
r"\{\|.+\|\}", # Embedded code | |
# r"\{\{.+\s.+\}\}", # Embedded code | |
r"^\s+", # Initial whitespace | |
r"\s+$", # Trailing whitespace | |
] | |
# List of patterns to replaces | |
REGEX_REPLACE = { | |
"\n+": "\n", | |
"\\'": "'", | |
'""+': '"', | |
"''+": "'", | |
# r"(WP|Wikipedia):[^\s]+": "URL", # Wikipedia internal links | |
r"[^\s]+#[^\s]+": "URL", # Wikipedia internal links | |
r"https?:\/\/(www\.)?[-a-zA-Z0-9@:%._\+~#=]{2,256}\.[a-z]{2,4}\b([-a-zA-Z0-9@:%_\+.~#?&//=]*)": "URL", # ULRs | |
r"([uU]ser_[tT]alk|[tT]alk):[^\s]+": "URL", # Talk links | |
} | |
def clean_sentence(sentence): | |
"""Preprocess a sentence using the regex rules""" | |
for pattern in REGEX_REMOVE: | |
sentence = re.sub(pattern, "", sentence) | |
for pattern, repl in REGEX_REPLACE.items(): | |
sentence = re.sub(pattern, repl, sentence) | |
return sentence | |
def make_binary_label(row): | |
"""Make a row label binary by combining all toxicity types""" | |
for column in TOXIC_COLUMNS: | |
if row[column] == 1: | |
return 1 | |
return 0 | |
print("Loading original data...") | |
# Load up the original data | |
train_df = pd.read_csv("orig_train.csv").set_index("id") | |
test_text_df = pd.read_csv("orig_test.csv").set_index("id") | |
test_labels_df = pd.read_csv("orig_test_labels.csv").set_index("id") | |
# Remove the datapoints which have no label | |
test_text_df = test_text_df.loc[test_labels_df["toxic"] != -1] | |
test_labels_df = test_labels_df.loc[test_labels_df["toxic"] != -1] | |
# Join the test text and labels to make a complete dataset | |
test_df = test_text_df.join(test_labels_df) | |
print("Cleaning train split...") | |
for index, row in tqdm(train_df.iterrows(), total=len(train_df)): | |
row["comment_text"] = clean_sentence(row["comment_text"]) | |
print("Cleaning test split...") | |
for index, row in tqdm(test_df.iterrows(), total=len(test_df)): | |
row["comment_text"] = clean_sentence(row["comment_text"]) | |
# Some texts will get reduced to the empty string. Let's remove them first | |
print("Removing empty texts...") | |
train_df = train_df.loc[train_df["comment_text"] != ""] | |
test_df = test_df.loc[test_df["comment_text"] != ""] | |
# Get rid of any duplicates we made | |
print("Removing duplicate entries...") | |
train_df = train_df.drop_duplicates(subset=["comment_text"]) | |
test_df = test_df.drop_duplicates(subset=["comment_text"]) | |
print("Creating binary column...") | |
# Make the new binary column | |
train_df["label"] = train_df.apply(make_binary_label, axis=1) | |
test_df["label"] = test_df.apply(make_binary_label, axis=1) | |
# Remove all other classification columns | |
train_df = train_df.drop(columns=TOXIC_COLUMNS) | |
test_df = test_df.drop(columns=TOXIC_COLUMNS) | |
print("Creating eval split...") | |
# Shuffle the current train split | |
train_df = train_df.sample(frac=1, random_state=seed) | |
# The new size of the train split | |
train_size = math.floor(len(train_df) * 0.8) | |
# Separate into train and eval splits | |
eval_df = train_df[train_size:] | |
train_df = train_df[:train_size] | |
# print("Saving to disk...") | |
with open("train.csv", "w") as f: | |
train_df.to_csv(f) | |
with open("validation.csv", "w") as f: | |
eval_df.to_csv(f) | |
with open("test.csv", "w") as f: | |
test_df.to_csv(f) |